
Drools Flow User Guide

iii

... vii

1. Introduction ... 1

2. Installer .. 3

2.1. Prerequisites .. 3

2.2. Download the installer ... 3

2.3. Download the installer ... 3

2.4. Using Eclipse Tooling ... 4

2.5. Using Guvnor repository .. 4

2.6. Using web management consoles ... 5

3. Getting Started .. 7

3.1. Installation .. 7

3.2. Creating Your First Process .. 7

3.3. Executing your first process ... 13

4. Rule Flow ... 17

4.1. Creating a RuleFlow Process .. 17

4.1.1. Using the Graphical RuleFlow Editor ... 17

4.1.2. Defining Processes Using XML ... 19

4.1.3. Defining Processes Using the Process API .. 20

4.2. Using a Process in Your Application .. 23

4.3. Detailed Explanation of the Different Node Types ... 24

4.4. Data ... 35

4.5. Constraints ... 36

4.6. Actions ... 37

4.7. Events .. 38

4.8. Exceptions .. 40

4.9. Timers .. 41

4.10. Updating processes ... 41

4.10.1. Process instance migration ... 42

4.11. Assigning Rules to a Ruleflow Group ... 43

4.12. A Simple Ruleflow ... 44

4.13. Using Drools 4.x RuleFlow Processes .. 47

5. Drools Flow API ... 49

5.1. Knowledge Base ... 49

5.2. Session .. 49

5.3. Events .. 50

6. Persistence .. 53

6.1. Runtime State ... 53

6.1.1. Binary Persistence ... 53

6.1.2. Safe Points .. 53

6.1.3. Configuring Persistence .. 53

6.1.4. Transactions .. 56

6.2. Process Definitions ... 57

6.3. History Log ... 58

6.3.1. Storing Process Events in a Database ... 58

Drools Flow User Guide

iv

7. Drools Flow Process Model ... 61

8. Rules and Processes ... 63

8.1. Why Use Rules in Processes? .. 63

8.2. Why Integrate Rules and Processes in a Single Engine? 64

8.3. Approach .. 64

8.3.1. Teaching a Rules Engine About Processes .. 65

8.3.2. Inversion of Control .. 65

8.4. Example ... 65

8.4.1. Evaluating a Set of Rules in Your Process ... 67

8.4.2. Using Rules for Evaluating Constraints .. 68

8.4.3. Assignment Rules .. 70

8.4.4. Describing Exceptional Situations Using Rules ... 70

8.4.5. Modularizing Concerns Using Rules .. 71

8.4.6. Rules for Altering Process Behavior Dynamically 71

8.4.7. Integrated Tooling .. 71

8.4.8. Domain-specific Rules and Processes ... 72

9. Domain-specific processes .. 75

9.1. Introduction ... 75

9.2. Example: Notifications ... 76

9.2.1. Creating the work definition .. 76

9.2.2. Registering the work definition .. 77

9.2.3. Using your new work item in your processes .. 77

9.2.4. Executing work items ... 79

9.3. Testing processes using work items ... 80

9.4. Future .. 80

10. Human Tasks ... 81

10.1. Human tasks inside processes ... 81

10.1.1. Swimlanes ... 84

10.2. Human task management component .. 85

10.2.1. Task life cycle .. 85

10.2.2. Linking the task component to the Drools Flow engine 87

10.2.3. Starting the Task Management Component .. 89

10.2.4. Interacting With the Task Management Component 91

10.3. Human Task Management Interface ... 92

10.3.1. Eclipse integration .. 92

10.3.2. Web-based Task View .. 93

11. Debugging processes .. 95

11.1. A simple example ... 95

11.2. Debugging the process .. 96

11.2.1. The Process Instances View ... 97

11.2.2. The Audit View .. 99

12. Drools Eclipse IDE Features .. 101

12.1. Drools Runtimes .. 101

12.1.1. Defining a Drools Runtime .. 101

v

12.1.2. Selecting a runtime for your Drools project ... 105

12.2. Process Skins ... 106

13. Business Activity Monitoring ... 109

13.1. Reporting .. 109

13.2. Direct Intervention ... 111

14. Business Process Model and Notation (BPMN 2.0) .. 113

14.1. Current limitations ... 121

15. Console .. 127

15.1. Installation .. 127

15.1.1. Installing Guvnor .. 127

15.1.2. Changing the persistence configuration of your runtime data 127

15.1.3. Changing the persistence configuration of your history data 128

15.1.4. Installing the reporting engine .. 128

15.1.5. User authentication ... 129

15.1.6. Configure memory settings .. 129

15.2. Adding process definitions in Guvnor .. 129

15.3. Running the process management console ... 131

15.3.1. Managing process instances ... 132

15.3.2. Human task lists ... 137

15.3.3. Reporting ... 139

15.4. Adding new process / task forms ... 143

Index ... 145

vi

vii

viii

Chapter 1.

1

Chapter 1. Introduction
Drools Flow is a workflow or process engine that allows advanced integration of processes and

rules. A process or a workflow describes the order in which a series of steps need to be executed,

using a flow chart. For example, the following figure shows a process where first Task1 and Task2

need to be executed in parallel. After completion of both, Task3 needs to be executed.

The following chapters will teach you everything you need to know about Drools Flow. Its

distinguishing characteristics are:

1. Advanced integration of processes and rules: Processes and rules are usually considered

as two different paradigms when it comes to defining business logic. While loose coupling

between a processes and rules is possible by integrating both a process and a rules engine,

we provide advanced integration of processes and rules out-of-the-box. This allows users to

use rules to define part of their business logic when defining their business processes and vice

versa.

2. Unification of processes and rules: We consider rules, processes and event processing all

as different types of knowledge. Not only do we allow the advanced integration of these three

types, we also offer a unified API and unified tooling so that users should not have to learn three

different products but can easily combine these three types using our knowledge-based API.

The tooling also allows seamless integration of these different kinds of knowledge, including

things like a unified knowledge repository, audit logs, debugging, etc.

3. Declarative modelling: Drools Flow tries to keep processes as declarative as possible, i.e.,

focussing on what should happen instead of how. As a result, we try to avoid having to hardcode

details into your process but offer ways to describe your work in an abstract way (e.g., by using

pluggable work items, a business scripting language, etc.). We also allow users to easily create

domain-specific extensions, making it much simpler to read, update or create these processes

as they are using domain-specific concepts that are closely related to the problem at hand and

can be understood by domain experts.

4. Generic process engine supporting multiple process languages: We do not believe that

there is one process language that fits all purposes. Therefore, the Drools Flow engine is

based on a generic process engine that allows the definition and execution of different types of

Chapter 1. Introduction

2

process languages, like for example our RuleFlow language, WS-BPEL (a standard targeted

towards web service orchestration), OSWorkflow (another existing workflow language), jPDL

(the process language defined by the jBPM project), etc. All these languages are based on the

same set of core building blocks, making it easier to implement your own process language by

reusing and combining these low-level building blocks the way you want to.

All these features (and many more) will be explained in the following chapters.

Chapter 2.

3

Chapter 2. Installer
Drools now comes with an installer.

2.1. Prerequisites

This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you

don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

2.2. Download the installer

First of all, you need to download the installer: drools-{version}-install.zip

You can for example find the latest snapshot release here.

http://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/

2.3. Download the installer

The easiest way to get started is to simply run the installation script to install the demo setup.

Simply go into the install folder and run:

ant install.demo

This will:

• Download JBoss AS

• Download Eclipse

• Install Guvnor into JBoss AS

• Install the gwt-console into JBoss AS

• Install the Eclipse plugins

Once the demo setup has finished (this could take a while as it might have to download the various

components), you can start playing with the various components by starting the demo setup:

ant start.demo

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
http://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/

Chapter 2. Installer

4

This will:

• Start the H2 database

• Start the JBoss AS

• Start Eclipse

• Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor and gwt-console,

as explained in the next three sections.

2.4. Using Eclipse Tooling

The following screencast [http://people.redhat.com/kverlaen/install-eclipse.swf] gives an overview

of how to run a simple demo process in Eclipse. It shows you:

• How to import an existing example project into your workspace, containing

• a sample BPMN2 process for requesting a performance evaluation

• a sample Java class to start the process

• How to start the process

• How to complete human tasks using the test human task client in Eclipse

If you want to know more, we recommend you take a look at the rest of the Drools documentation.

2.5. Using Guvnor repository

Open up Drools Guvnor:

http://localhost:8080/drools-guvnor

Log in, using any non-empty username / password (we disabled authentication for demo

purposes). The following screencast [http://people.redhat.com/kverlaen/install-guvnor.swf] gives

an overview of how to manage your repository. It shows you:

• How to import an existing sample repository, containing the performance evaluation process

as shown in the previous section

• How to look up the processes that are part of a package

• How to build a package so it can be used for creating a session (like for example in the gwt-

console as shown in the next section)

If you want to know more, we recommend you take a look at the rest of the Drools documentation.

http://people.redhat.com/kverlaen/install-eclipse.swf
http://people.redhat.com/kverlaen/install-eclipse.swf
http://localhost:8080/drools-guvnor
http://people.redhat.com/kverlaen/install-guvnor.swf
http://people.redhat.com/kverlaen/install-guvnor.swf

Using web management consoles

5

2.6. Using web management consoles

First make sure you have imported the sample repository and built the defaultPackage in Guvnor

first (see previous section). Open up the process management console:

http://localhost:8080/gwt-console

Log in, using krisv / krisv as username / password. The following screencast [http://

people.redhat.com/kverlaen/install-gwt-console.swf] gives an overview of how to manage your

process instances. It shows you:

• How to start a new process

• How to look up the current status of a running process instance

• How to look up your tasks

• How to complete a task

• How to generate reports to monitor your process execution

If you want to know more, we recommend you take a look at the rest of the Drools documentation.

Once you're done playing:

ant stop.demo

and simply close all the rest.

http://localhost:8080/gwt-console
http://people.redhat.com/kverlaen/install-gwt-console.swf
http://people.redhat.com/kverlaen/install-gwt-console.swf
http://people.redhat.com/kverlaen/install-gwt-console.swf

6

Chapter 3.

7

Chapter 3. Getting Started
This section describes how to get started with Drools Flow. It will guide you to create and execute

your first Drools Flow process.

3.1. Installation

The best way to get started is to use the Drools Eclipse Plugin for the Eclipse development

environment. It allows users to create, execute and debug Drools processes and rules. To get

started with the plugin, you first need an installation of Eclipse 3.4.x including the Eclipse Graphical

Editing Framework (GEF). Eclipse can be downloaded from the following link (if you do not know

which version of eclipse you need, simply choose the "Eclipse IDE for Java Developers", and this

one already includes the GEF plugin as well):

http://www.eclipse.org/downloads/

Next you need to install the Drools Eclipse plugin. Download the Drools Eclipse IDE plugin from

the link below. Unzip the downloaded file in your main eclipse folder (do not just copy the file

there, extract it so that the feature and plugin jars end up in the features and plugin directory of

eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the "Open

Perspective" button in the top right corner of your Eclipse window, select "Other..." and pick the

Drools perspective. If you cannot find the Drools perspective as one of the possible perspectives,

the installation probably was unsuccessful. Check whether you executed each of the required

steps correctly: Do you have the right version of Eclipse (3.4.x)? Ensure that you have Eclipse GEF

installed, by checking whether the org.eclipse.gef_3.4.*.jar exists in the plugins directory in

your Eclipse root folder. Make sure that you have extracted the Drools Eclipse plugin correctly, by

checking whether the org.drools.eclipse_*.jar exists in the plugins directory in your Eclipse

root folder. If you cannot find the problem, try contacting us, either on irc or on the user mailing

list. More information can be found on our homepage:

http://www.jboss.org/drools/

3.2. Creating Your First Process

The Drools project wizard can be used to set up an executable project that contains the necessary

files to get started easily with defining and executing processes. This wizard will set up a basic

project structure, the classpath, a sample process and execution code to get you started. To create

a new Drools project, simply left-click on the Drools action button (with the Drools head) in the

Eclipse toolbar and select "New Drools Project". (Note that the Drools action button only shows up

in the Drools perspective. To open the Drools perspective (if you haven't done so already), click

the "Open Perspective" button in the top right corner of your Eclipse window, select "Other..." and

http://www.eclipse.org/downloads/
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/

Chapter 3. Getting Started

8

pick the Drools perspective.) Alternatively, you could also select "File", then "New" followed by

"Project ...", and in the Drools folder, select "Drools Project". This should open the following dialog:

Give your project a name and click "Next". In the following dialog you can select which elements

are added to your project by default. Since we are creating a new process, deselect the first two

checkboxes and select the last two. This will generate a sample process and a Java class to

execute this process.

Creating Your First Process

9

If you have not yet set up a Drools runtime, you should do this now. A Drools runtime is a collection

of jars on your file system that represent one specific release of the Drools project jars. To create

a runtime, you must either point the IDE to the release of your choice, or you can simply create

a new runtime on your file system from the jars included in the Drools Eclipse plugin. Since we

simply want to use the Drools version included in this plugin, we will do the latter. Note that you

will only have to do this once; next time you create a Drools project, it will automatically use the

default Drools runtime (unless you specify otherwise).

Unless you have already set up a Drools runtime, click the "Next" button. The following dialog,

as displayed below, shows up, telling you that you have not yet defined a default Drools runtime

and that you should configure the workspace settings first. Do this by clicking on the "Configure

Workspace Settings ..." link.

Chapter 3. Getting Started

10

The dialog that pops up shows the workspace settings for Drools runtimes. The first time you

do this, the list of installed Drools runtimes is probably empty, as shown below. To create a new

runtime on your file system, click the "Add..." button. This shows a dialog where you should give

the new runtime a name (e.g. "Drools 5.0.0 runtime"), and a path to your Drools runtime on your

file system. In this tutorial, we will simply create a new Drools 5 runtime from the jars embedded

in the Drools Eclipse plugin. Click the "Create a new Drools 5 runtime ..." button and select the

folder where you want this runtime to be stored and click the "OK" button. You will see the selected

path showing up in the previous dialog. As we're all done here, click the "OK" button. You will see

the newly created runtime shown in your list of Drools runtimes. Select this runtime as the new

default runtime by clicking on the check box in front of your runtime name and click "OK". After

successfully setting up your runtime, you can now finish the project creation wizard by clicking

on the "Finish" button.

Creating Your First Process

11

The end result should look like this and contains:

1. ruleflow.rf: the process definition, which is a very simple process containing a Start node

(the entry point), an Action node (that prints out "Hello World") and an End node (the end of

the process).

2. RuleFlowTest.java: a Java class that executes the process.

Chapter 3. Getting Started

12

3. The necessary libraries are automatically added to the project classpath as a Drools library.

By double-clicking the ruleflow.rf file, the process will be opened in the RuleFlow editor. The

RuleFlow editor contains a graphical representation of your process definition. It consists of nodes

that are connected to each other. The editor shows the overall control flow, while the details of

each of the elements can be viewed (and edited) in the Properties View at the bottom. The editor

contains a palette at the left that can be used to drag-and-drop new nodes, and an outline view

at the right.

This process is a simple sequence of three nodes. The Start node defines the start of the process.

It is connected to an Action node (called "Hello" that simply prints out "Hello World" to the standard

output. You can see this by clicking on the "Hello" node and checking the action property in the

Properties View below. This node is then connected to an End node, signaling the end of the

process.

While it is probably easier to edit processes using the graphical editor, users can also modify the

underlying XML directly. The XML for our sample process is shown below (note that we did not

include the graphical information here for simplicity). The process element contains parameters

like the name and id of the process, and consists of three main subsections: a header (where

information like variables, globals and imports can be defined), the nodes and the connections.

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns="http://drools.org/drools-5.0/process"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

Executing your first process

13

 xs:schemaLocation="http://drools.org/drools-5.0/process drools-processes-5.0.xsd"

 type="RuleFlow"

 name="ruleflow"

 id="com.sample.ruleflow"

 package-name="com.sample" >

 <header>

 </header>

 <nodes>

 <start id="1" name="Start" x="16" y="16" />

 <actionNode id="2" name="Hello" x="128" y="16" >

 <action type="expression"

 dialect="mvel">System.out.println("Hello World");</action>

 </actionNode>

 <end id="3" name="End" x="240" y="16" />

 </nodes>

 <connections>

 <connection from="1" to="2" />

 <connection from="2" to="3" />

 </connections>

</process>

3.3. Executing your first process

To execute this process, right-click on RuleFlowTest.java and select "Run As..." and "Java

Application". When the process in executed, the following output should appear in the Console

window:

Hello World

If you look at the code of class RuleFlowTest (see below), you will see that executing a process

requires a few steps:

1. You should first create a Knowledge Base. A Knowledge Base contains all the knowledge (i.e.,

processes, rules, etc.) that are relevant in your application. This Knowledge Base is usually

created once, and then reused. In this case, the Knowledge Base only consists of our sample

process.

Chapter 3. Getting Started

14

2. Next, you should create a session to interact with the engine. Note that we also add a logger

to the session to log execution events and make it easier to visualize what is going on.

3. Finally, you can start a new instance of the process by invoking the startProcess(String

processId) method on the session. This starts the execution of your process instance,

resulting in the executions of the Start node, the Action node, and the End node, in this order,

after which the process instance will be completed.

package com.sample;

import org.drools.KnowledgeBase;

import org.drools.builder.KnowledgeBuilder;

import org.drools.builder.KnowledgeBuilderFactory;

import org.drools.builder.ResourceType;

import org.drools.io.ResourceFactory;

import org.drools.logger.KnowledgeRuntimeLogger;

import org.drools.logger.KnowledgeRuntimeLoggerFactory;

import org.drools.runtime.StatefulKnowledgeSession;

/**

 * This is a sample file to launch a process.

 */

public class ProcessTest {

 public static final void main(String[] args) {

 try {

 // load up the knowledge base

 KnowledgeBase kbase = readKnowledgeBase();

 StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

 KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");

 // start a new process instance

 ksession.startProcess("com.sample.ruleflow");

 logger.close();

 } catch (Throwable t) {

 t.printStackTrace();

 }

 }

 private static KnowledgeBase readKnowledgeBase() throws Exception {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource("ruleflow.rf"), ResourceType.DRF);

 return kbuilder.newKnowledgeBase();

Executing your first process

15

 }

}

Congratulations, you have successfully executed your first process! Because we added a logger

to the session, you can easily check what happened internally by looking at the audit log. Select

the "Audit View" tab on the bottom right, next to the Console tab. Click on the "Open Log" button

(the first one one the right of the view) and navigate to the newly created test.log file in your

project folder. (If you are not sure where this project folder is located, right-click on the project

folder and you will find the location in the "Resource" section). An image like the one below should

be shown. It is a tree view of the events that occurred at runtime. Events that were executed as

the direct result of another event are shown as the children of that event. This log shows that after

starting the process, the Start node, the Action node and the End node were triggered, in that

order, after which the process instance was completed.

You can now start experimenting and designing your own process by modifying our example. Note

that you can validate your process by clicking on the "Check the ruleflow model" button, i.e., the

green check box action in the upper toolbar that shows up if you are editing a process. Processes

will also be validated upon save, and errors will be shown in the Error View.

Continue reading our documentation to learn about our more advanced features.

16

Chapter 4.

17

Chapter 4. Rule Flow

Figure 4.1. Ruleflow

A RuleFlow is a process that describes the order in which a series of steps need to be executed,

using a flow chart. A process consists of a collection of nodes that are linked to each other using

connections. Each of the nodes represents one step in the overall process while the connections

specify how to transition from one node to the other. A large selection of predefined node types

have been defined. This chapter describes how to define such processes and use them in your

application.

4.1. Creating a RuleFlow Process

Processes can be created by using one of the following three methods:

1. Using the graphical RuleFlow editor in the Drools plug-in for Eclipse

2. As an XML file, according to the XML process format as defined in the XML Schema definition

for Drools processes.

3. By directly creating a process using the Process API.

4.1.1. Using the Graphical RuleFlow Editor

The graphical RuleFlow editor is a editor that allows you to create a process by dragging and

dropping different nodes on a canvas and editing the properties of these nodes. The graphical

RuleFlow editor is part of the Drools plug-in for Eclipse. Once you have set up a Drools project

(check the IDE chapter if you do not know how to do this), you can start adding processes. When

in a project, launch the "New" wizard: use Ctrl+N or right-click the directory you would like to put

your ruleflow in and select "New", then "Other...". Choose the section on "Drools" and then pick

"RuleFlow file". This will create a new .rf file.

Chapter 4. Rule Flow

18

Figure 4.2. Creating a new RuleFlow file

Next you will see the graphical RuleFlow editor. Now would be a good time to switch to the Drools

Perspective (if you haven't done so already). This will tweak the user interface so that it is optimal

for rules. Then, ensure that you can see the Properties View down the bottom of the Eclipse

window, as it will be necessary to fill in the different properties of the elements in your process.

If you cannot see the properties view, open it using the menu "Window", then "Show View" and

"Other...", and under the "General" folder select the Properties View.

Defining Processes Using XML

19

Figure 4.3. New RuleFlow process

The RuleFlow editor consists of a palette, a canvas and an Outline View. To add new elements

to the canvas, select the element you would like to create in the palette and then add them to the

canvas by clicking on the preferred location. For example, click on the "RuleFlowGroup" icon in

the "Components" palette of the GUI: you can then draw a few rule flow groups. Clicking on an

element in your rule flow allows you to set the properties of that element. You can connect the

nodes (as long as it is permitted by the different types of nodes) by using "Connection Creation"

from the "Components" palette.

You can keep adding nodes and connections to your process until it represents the business logic

that you want to specify. You'll probably need to check the process for any missing information (by

pressing the green "Check" icon in the IDE menu bar) before trying to use it in your application.

4.1.2. Defining Processes Using XML

It is also possible to specify processes using the underlying XML directly. The syntax of these XML

processes is defined using an XML Schema definition. For example, the following XML fragment

shows a simple process that contains a sequence of a Start node, an Action node that prints "Hello

World" to the console, and an End node.

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns="http://drools.org/drools-5.0/process"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

 xs:schemaLocation="http://drools.org/drools-5.0/process drools-processes-5.0.xsd"

 type="RuleFlow" name="ruleflow" id="com.sample.ruleflow" package-

name="com.sample" >

Chapter 4. Rule Flow

20

 <header>

 </header>

 <nodes>

 <start id="1" name="Start" x="16" y="16" />

 <actionNode id="2" name="Hello" x="128" y="16" >

 <action type="expression" dialect="mvel" >System.out.println("Hello World");</action>

 </actionNode>

 <end id="3" name="End" x="240" y="16" />

 </nodes>

 <connections>

 <connection from="1" to="2" />

 <connection from="2" to="3" />

 </connections>

</process>

The process XML file should consist of exactly one <process> element. This element contains

parameters related to the process (its type, name, id and package name), and consists of three

subsections: a <header> (where process-level information like variables, globals, imports and

swimlanes can be defined), a <nodes> section that defines each of the nodes in the process, and

a <connections> section that contains the connections between all the nodes in the process. In

the nodes section, there is a specific element for each node, defining the various parameters and,

possibly, sub-elements for that node type.

4.1.3. Defining Processes Using the Process API

While it is recommended to define processes using the graphical editor or the underlying

XML (to shield yourself from internal APIs), it is also possible to define a process using

the Process API directly. The most important process elements are defined in the packages

org.drools.workflow.core and org.drools.workflow.core.node. A "fluent API" is provided

that allows you to easily construct processes in a readable manner using factories. At the end,

you can validate the process that you were constructing manually. Some examples about how to

build processes using this fluent API are added below.

4.1.3.1. Example 1

This is a simple example of a basic process with a ruleset node only:

RuleFlowProcessFactory factory =

 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldRuleSet");

factory

Defining Processes Using the Process API

21

 // Header

 .name("HelloWorldRuleSet")

 .version("1.0")

 .packageName("org.drools")

 // Nodes

 .startNode(1).name("Start").done()

 .ruleSetNode(2)

 .name("RuleSet")

 .ruleFlowGroup("someGroup").done()

 .endNode(3).name("End").done()

 // Connections

 .connection(1, 2)

 .connection(2, 3);

RuleFlowProcess process = factory.validate().getProcess();

You can see that we start by calling the static createProcess() method from the

RuleFlowProcessFactory class. This method creates a new process with the given id and returns

the RuleFlowProcessFactory that can be used to create the process. A typical process consists

of three parts. The header part comprises global elements like the name of the process, imports,

variables, etc. The nodes section contains all the different nodes that are part of the process. The

connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package

name. After that, you can start adding nodes to the current process. If you have auto-completion

you can see that you have different methods to create each of the supported node types at your

disposal.

When you start adding nodes to the process, in this example by calling the startNode(),

ruleSetNode() and endNode() methods, you can see that these methods return a

specific NodeFactory, that allows you to set the properties of that node. Once you have

finished configuring that specific node, the done() method returns you to the current

RuleFlowProcessFactory so you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between

them. This can be done by calling the method connection, which will link previously created

nodes.

Finally, you can validate the generated process by calling the validate() method and retrieve

the created RuleFlowProcess object.

4.1.3.2. Example 2

This example is using Split and Join nodes:

Chapter 4. Rule Flow

22

RuleFlowProcessFactory factory =

 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldJoinSplit");

factory

 // Header

 .name("HelloWorldJoinSplit")

 .version("1.0")

 .packageName("org.drools")

 // Nodes

 .startNode(1).name("Start").done()

 .splitNode(2).name("Split").type(Split.TYPE_AND).done()

 .actionNode(3).name("Action 1")

 .action("mvel", "System.out.println(\"Inside Action 1\")").done()

 .actionNode(4).name("Action 2")

 .action("mvel", "System.out.println(\"Inside Action 2\")").done()

 .joinNode(5).type(Join.TYPE_AND).done()

 .endNode(6).name("End").done()

 // Connections

 .connection(1, 2)

 .connection(2, 3)

 .connection(2, 4)

 .connection(3, 5)

 .connection(4, 5)

 .connection(5, 6);

RuleFlowProcess process = factory.validate().getProcess();

This shows a simple example using Split and Join nodes. As you can see, a Split node can have

multiple outgoing connections, and a Join node multiple incoming connections. To understand

the behavior of the different types of Split and Join nodes, take a look at the documentation for

each of these nodes.

4.1.3.3. Example 3

Now we show a more complex example with a ForEach node, where we have nested nodes:

RuleFlowProcessFactory factory =

 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldForeach");

factory

 // Header

 .name("HelloWorldForeach")

 .version("1.0")

 .packageName("org.drools")

 // Nodes

 .startNode(1).name("Start").done()

Using a Process in Your Application

23

 .forEachNode(2)

 // Properties

 .linkIncomingConnections(3)

 .linkOutgoingConnections(4)

 .collectionExpression("persons")

 .variable("child", new ObjectDataType("org.drools.Person"))

 // Nodes

 .actionNode(3)

 .action("mvel", "System.out.println(\"inside action1\")").done()

 .actionNode(4)

 .action("mvel", "System.out.println(\"inside action2\")").done()

 // Connections

 .connection(3, 4)

 .done()

 .endNode(5).name("End").done()

 // Connections

 .connection(1, 2)

 .connection(2, 5);

RuleFlowProcess process = factory.validate().getProcess();

Here you can see how we can include a ForEach node with nested action nodes. Note the

linkIncomingConnections() and linkOutgoingConnections() methods that are called to link

the ForEach node with the internal action node. These methods are used to specify the first and

last nodes inside the ForEach composite node.

4.2. Using a Process in Your Application

There are two things you need to do to be able to execute processes from within your application:

(1) you need to create a Knowledge Base that contains the definition of the process, and (2) you

need to start the process by creating a session to communicate with the process engine and start

the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the

Knowledge Base. Note that this is almost identical to adding rules to the Knowledge Base,

except for the type of knowledge added:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"),

 ResourceType.DRF);

After adding all your knowledge to the builder (you can add more than one process, and even

rules), you can create a new knowledge base like this:

Chapter 4. Rule Flow

24

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Note that this will throw an exception if the knowledge base contains errors (because it could

not parse your processes correctly).

2. Starting a process: Processes are only executed if you explicitly state that they should be

executed. This is because you could potentially define a lot of processes in your Knowledge

Base and the engine has no way to know when you would like to start each of these. To

activate a particular process, you will need to start it by calling the startProcess method on

your session. For example:

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.startProcess("com.sample.MyProcess");

The parameter of the startProcess method represents the id of the process that needs to

be started. This process id needs to be specified as a property of the process, shown in the

Properties View when you click the background canvas of your process. If your process also

requires the execution of rules during the execution of the process, you also need to call the

ksession.fireAllRules() method to make sure the rules are executed as well. That's it!

You may specify additional parameters that are used to pass on input data to the process, using

the startProcess(String processId, Map parameters) method, which takes an additional

set of parameters as name-value pairs. These parameters are then copied to the newly created

process instance as top-level variables of the process.

You can also start a process from within a rule consequence, or from inside a process action,

using the predefined kcontext parameter:

kcontext.getKnowledgeRuntime().startProcess("com.sample.MyProcess");

4.3. Detailed Explanation of the Different Node Types

A ruleflow process is a flow chart where different types of nodes are linked using connections.

The process itself exposes the following properties:

• Id: The unique id of the process.

• Name: The display name of the process.

Detailed Explanation of the Different Node Types

25

• Version: The version number of the process.

• Package: The package (namespace) the process is defined in.

• Variables: Variables can be defined to store data during the execution of your process. See

section “Data” for details.

• Swimlanes: Specify the actor responsible for the execution of human tasks. See chapter

“Human Tasks” for details.

• Exception Handlers: Specify the behaviour when a fault occurs in the process. See section

“Exceptions” for details.

• Connection Layout: Specify how the connections are visualized on the canvas using the

connection layout property:

• 'Manual' always draws your connections as lines going straight from their start to end point

(with the possibility to use intermediate break points).

• 'Shortest path' is similar, but it tries to go around any obstacles it might encounter between

the start and end point, to avoid lines crossing nodes.

• 'Manhattan' draws connections by only using horizontal and vertical lines.

A RuleFlow process supports different types of nodes:

Chapter 4. Rule Flow

26

Figure 4.4. The different types of ruleflow nodes

1. Start Event: The start of the ruleflow. A ruleflow should have exactly one start node, which

cannot have incoming connections and should have one outgoing connection. Whenever a

RuleFlow process is started, execution will start at this node and automatically continue to the

first node linked to this start node, and so on. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Triggers: A Start node can also specify additional triggers that can be used to automatically

start the process. Examples are a "constraint" trigger that automatically starts the process if a

given rule or constraint is satisfied, or an "event" trigger that automatically starts the process

if a specific event is signalled. Note that it currently not possibly to specify this in the graphical

editor. You should manually update the process XML for now.

• MetaData: Metadata related to this node.

2. End Event: The end of the ruleflow. A ruleflow should have one or more End nodes. The End

node should have one incoming connection and cannot have outgoing connections. It contains

the following properties:

Detailed Explanation of the Different Node Types

27

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Terminate: An End node can be terminating for the entire process (default) or just for the path.

If the process is terminated, all nodes that are still active (on parallel paths) in this ruleflow are

cancelled. Non-terminating End nodes are simply ends for some path, while other parallel

paths still continue.

• MetaData: Metadata related to this node.

3. Rule Task (or RuleFlowGroup): Represents a set of rules that need to be evaluated. The rules

are evaluated when the node is reached. A RuleFlowGroup node should have one incoming

connection and one outgoing connection. Rules can become part of a specific ruleflow group

using the ruleflow-group attribute in the header. When a RuleFlowGroup node is reached

in the ruleflow, the engine will start executing rules that are part of the corresponding ruleflow-

group (if any). Execution will automatically continue to the next node if there are no more

active rules in this ruleflow group. This means that, during the execution of a ruleflow group,

it is possible that new activations belonging to the currently active ruleflow group are added

to the Agenda due to changes made to the facts by the other rules. Note that the ruleflow

will immediately continue with the next node if it encounters a ruleflow group where there are

no active rules at that time. If the ruleflow group was already active, the ruleflow group will

remain active and execution will only continue if all active rules of the ruleflow group has been

completed. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this

RuleFlowGroup node.

• Timers: Timers that are linked to this node. See section “Timers” for details.

• MetaData: Metadata related to this node.

4. Diverging Gateway (or Split): Allows you to create branches in your ruleflow. A Split node

should have one incoming connection and two or more outgoing connections. There are three

types of Split nodes currently supported:

• AND means that the control flow will continue in all outgoing connections simultaneously.

• XOR means that exactly one of the outgoing connections will be chosen. The decision is

made by evaluating the constraints that are linked to each of the outgoing connections.

Constraints are specified using the same syntax as the left-hand side of a rule. The constraint

with the lowest priority number that evaluates to true is selected. Note that you should always

make sure that at least one of the outgoing connections will evaluate to true at runtime (the

ruleflow will throw an exception at runtime if it cannot find at least one outgoing connection).

Chapter 4. Rule Flow

28

For example, you could use a connection which is always true (default) with a high priority

number to specify what should happen if none of the other connections can be taken.

• OR means that all outgoing connections whose condition evaluates to true are selected.

Conditions are similar to the XOR split, except that no priorities are taken into account. Note

that you should make sure that at least one of the outgoing connections will evaluate to true

at runtime because the ruleflow will throw an exception at runtime if it cannot determine an

outgoing connection.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the split node, i.e., AND, XOR or OR (see above).

• Constraints: The constraints linked to each of the outgoing connections (in case of an (X)OR

split).

• MetaData: Metadata related to this node.

5. Converging Gateway (or Join): Allows you to synchronize multiple branches. A join node

should have two or more incoming connections and one outgoing connection. There are four

types of splits currently supported:

• AND means that is will wait until all incoming branches are completed before continuing.

• XOR means that it continues as soon as one of its incoming branches has been completed.

If it is triggered from more than one incoming connection, it will trigger the next node for each

of those triggers.

• Discriminator means that it continues if one of its incoming branches has been completed.

Completions of other incoming branches are registered until all connections have completed.

At that point, the node will be reset, so that it can trigger again when one of its incoming

branches has been completed once more.

• n-of-m means that it continues if n of its m incoming branches have been completed. The

variable n could either be hardcoded to a fixed value, or refer to a process variable that will

contain the number of incoming branches to wait for.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the Join node, i.e. AND, XOR or Discriminator (see above).

• n: The number of incoming connections to wait for (in case of a n-of-m join).

• MetaData: Metadata related to this node.

Detailed Explanation of the Different Node Types

29

6. State: Represents a wait state. A state should have one incoming connection and one or more

outgoing connections. For each of the outgoing connections, a rule constraint can be specified

which defines how long the process should wait in this state before continuing. For example, a

constraint in an order entry application might specify that the process should wait until no more

errors are found in the given order. Constraints are specified using the same syntax as the left-

hand side of a rule. When a state is reached in the ruleflow, the engine will check the associated

constraints. If one of the constraint evaluates to true directly, the flow will continue imediately.

Otherwise, the flow will continue if one of the constraints is satisfied later on, for example when

a fact is inserted, updated or removed from the working memory. A state can also be signaled

manually to make it progress to the next state, using ksession.signalEvent("signal", "name")

where "name" should either be the name of the constraint for the connection that should be

selected, or the name of the node that should be moved to. A state contains the following

properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Constraints: Defines when the process can leave this state and continue for each of the

outgoing connections.

• Timers: Timers that are linked to this node. See section “Timers” for details.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.

• MetaData: Metadata related to this node.

7. Reusable Sub-Process (or SubFlow): represents the invocation of another process from

within this process. A sub-process node should have one incoming connection and one

outgoing connection. When a SubFlow node is reached in the ruleflow, the engine will start the

process with the given id. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• ProcessId: The id of the process that should be executed.

• Wait for completion: If this property is true, the SubFlow node will only continue if that SubFlow

process has terminated its execution (completed or aborted); otherwise it will continue

immediately after starting the subprocess.

• Independent: If this property is true, the subprocess is started as an independent process,

which means that the SubFlow process will not be terminated if this process reaches an end

node; otherwise the active sub-process will be cancelled on termination (or abortion) of the

process.

Chapter 4. Rule Flow

30

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.

• Parameter in/out mapping: A SubFlow node can also define in- and out-mappings for

variables. The value of variables in this process with variable names given in the "in" mapping

will be used as parameters (with the associated parameter name) when starting the process.

The value of the variables in the subprocess with the given variable name in the "out"

mappings will be copied to the variables of this process when the subprocess has been

completed. Note that you can use "out" mappings only when "Wait for completion" is set to

true.

• Timers: Timers that are linked to this node. See section “Timers” for details.

• MetaData: Metadata related to this node.

8. Script Task (or Action): represents an action that should be executed in this ruleflow. An Action

node should have one incoming connection and one outgoing connection. The associated

action specifies what should be executed, the dialect used for coding the action (i.e., Java or

MVEL), and the actual action code. This code can access any globals, the predefined variable

drools referring to a KnowledgeHelper object (which can, for example, be used to retrieve

the Working Memory by calling drools.getWorkingMemory()), and the variable kcontext

that references the ProcessContext object (which can, for example, be used to access the

current ProcessInstance or NodeInstance, and to get and set variables). When an Action

node is reached in the ruleflow, it will execute the action and then continue with the next node.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Action: The action associated with this action node.

• MetaData: Metadata related to this node.

9. Timer Event: represents a timer that can trigger one or multiple times after a given period of

time. A Timer node should have one incoming connection and one outgoing connection. The

timer delay specifies how long (in milliseconds) the timer should wait before triggering the first

time. The timer period specifies the time between two subsequent triggers. A period of 0 means

that the timer should only be triggered once. When a Timer node is reached in the ruleflow,

it will start the associated timer. The timer is cancelled if the timer node is cancelled (e.g., by

completing or aborting the process). Consult the section “Timers” for more information. - The

Timer node contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

Detailed Explanation of the Different Node Types

31

• Timer delay: The delay (in milliseconds) that the node should wait before triggering the first

time.

• Timer period: The period (in milliseconds) between two subsequent triggers. If the period is

0, the timer should only be triggered once.

• MetaData: Metadata related to this node.

10.Error Event (or Fault): A Fault node can be used to signal an exceptional condition in the

process. It should have one incoming connection and no outgoing connections. When a Fault

node is reached in the ruleflow, it will throw a fault with the given name. The process will search

for an appropriate exception handler that is capable of handling this kind of fault. If no fault

handler is found, the process instance will be aborted. A Fault node contains the following

properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• FaultName: The name of the fault. This name is used to search for appriopriate exception

handlers that is capable of handling this kind of fault.

• FaultVariable: The name of the variable that contains the data associated with this fault. This

data is also passed on to the exception handler (if one is found).

• MetaData: Metadata related to this node.

11.(Message) Event: An Event node can be used to respond to internal or external events during

the execution of the process. An Event node should have no incoming connections and one

outgoing connection. It specifies the type of event that is expected. Whenever that type of event

is detected, the node connected to this Event node will be triggered. It contains the following

properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• EventType: The type of event that is expected.

• VariableName: The name of the variable that will contain the data associated with this event

(if any) when this event occurs.

• Scope: An event could be used to listen to internal events only, i.e., events that are

signalled to this process instance directly, using processInstance.signalEvent(String

type, Object data). When an Event node is defined as external, it will also be

listening to external events that are signalled to the process engine directly, using

workingMemory.signalEvent(String type, Object event).

• MetaData: Metadata related to this node.

Chapter 4. Rule Flow

32

12.User Task (or Human Task): Processes can also involve tasks that need to be executed by

human actors. A Human Task node represents an atomic task to be executed by a human actor.

It should have one incoming connection and one outgoing connection. Human Task nodes can

be used in combination with Swimlanes to assign multiple human tasks to similar actors. Refer

to chapter “Human Tasks” for more details. A Human Task node is actually nothing more than

a specific type of work item node (of type "Human Task"). A Human Task node contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can

be specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may

decide not to execute the task.

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See the human tasks chapter for more detail on

how to use swimlanes.

• Wait for completion: If this property is true, the human task node will only continue if the

human task has been terminated (i.e., by completing or reaching any other terminal state);

otherwise it will continue immediately after creating the human task.

• On.entry and on-exit actions: Actions that are executed upon entry and exit of this node,

respectively.

• Parameter mapping: Allows copying the value of process variables to parameters of the

human task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. Note that you can

use result mappings only when "Wait for completion" is set to true. A human task has a result

variable "Result" that contains the data returned by the human actor. The variable "ActorId"

contains the id of the actor that actually executed the task.

• Timers: Timers that are linked to this node. Consult the section “Timers” for details.

• MetaData: Metadata related to this node.

Detailed Explanation of the Different Node Types

33

13.Sub-Process (or Composite): A Composite node is a node that can contain other nodes so

that it acts as a node container. This allows not only the embedding of a part of the flow within

such a Composite node, but also the definition of additional variables and exception handlers

that are accessible for all nodes inside this container. A Composite node should have one

incoming connection and one outgoing connection. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• StartNodeId: The id of the node (within this node container) that should be triggered when

this node is triggered.

• EndNodeId: The id of the node (within this node container) that represents the end of the

flow contained in this node. When this node is completed, the composite node will also

be completed and trigger its outgoing connection. All other executing nodes within this

composite node will be cancelled.

• Variables: Additional variables can be defined to store data during the execution of this node.

See section “Data” for details.

• Exception Handlers: Specify the behavior when a fault occurs in this node container. See

section “Exceptions” for details.

14.Multiple Instance (or ForEach): A ForEach node is a special kind of composite node that

allows you to execute the contained flow multiple times, once for each element in a collection. A

ForEach node should have one incoming connection and one outgoing connection. A ForEach

node awaits the completion of the embedded flow for each of the collection''s elements before

continuing. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• StartNodeId: The id of the node (within this node container) that should be triggered for each

of the elements in a collection.

• EndNodeId: The id of the node (within this node container) that represents the end of the flow

contained in this node. When this node is completed, the execution of the ForEach node will

also be completed for the current collection element. The outgoing connection is triggered

if the collection is exhausted. All other executing nodes within this composite node will be

cancelled.

• CollectionExpression: The name of a variable that represents the collection of elements that

should be iterated over. The collection variable should be of type java.util.Collection.

• VariableName: The name of the variable to contain the current element from the collection.

This gives nodes within the composite node access to the selected element.

Chapter 4. Rule Flow

34

15.WorkItem (or Service Task): Represents an (abstract) unit of work that should be executed

in this process. All work that is executed outside the process engine should be represented

(in a declarative way) using a WorkItem node. Different types of work items are predefined,

e.g., sending an email, logging a message, etc. Users can define domain-specific work items,

using a unique name and by defining the parameters (input) and results (output) that are

associated with this type of work. Refer to the chapter “Domain-specific processes” for a

detailed explanation and illustrative examples of how to define and use work items in your

processes. When a WorkItem node is reached in the process, the associated work item

is executed. A WorkItem node should have one incoming connection and one outgoing

connection.

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Wait for completion: If the property "Wait for completion" is true, the WorkItem node will

only continue if the created work item has terminated (completed or aborted) its execution;

otherwise it will continue immediately after starting the work item.

• Parameter mapping: Allows copying the value of process variables to parameters of the work

item. Upon creation of the work item, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the work item to a process

variable. Each type of work can define result parameters that will (potentially) be returned

after the work item has been completed. A result mapping can be used to copy the value of

the given result parameter to the given variable in this process. For example, the "FileFinder"

work item returns a list of files that match the given search criteria within the result parameter

Files. This list of files can then be bound to a process variable for use within the process.

Upon completion of the work item, the values will be copied. Note that you can use result

mappings only when "Wait for completion" is set to true.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,

respectively.

• Timers: Timers that are linked to this node. See the section “Timers” for details.

• Additional parameters: Each type of work item can define additional parameters that are

relevant for that type of work. For example, the "Email" work item defines additional

parameters such as From, To, Subject and Body. The user can either provide values for

these parameters directly, or define a parameter mapping that will copy the value of the

given variable in this process to the given parameter; if both are specified, the mapping

will have precedence. Parameters of type String can use #{expression} to embed a

value in the string. The value will be retrieved when creating the work item, and the

substitution expression will be replaced by the result of calling toString() on the variable.

The expression could simply be the name of a variable (in which case it resolves to the

value of the variable), but more advanced MVEL expressions are possible as well, e.g.,

#{person.name.firstname}.

Data

35

• MetaData: Metadata related to this node.

4.4. Data

While the flow graph focusses on specifying the control flow of the process, it is usually also

necessary to look at the process from a data perspective. Throughout the execution of a process,

data can retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, you use variables. A variable is

defined by a name and a data type. This could be a basic data type, such as boolean, int, or String,

or any kind of Object subclass. Variables can be defined inside a variable scope. The top-level

scope is the variable scope of the process itself. Subscopes can be defined using a Composite

node. Variables that are defined in a subscope are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that

defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable

in its parent container. If the variable cannot be found, it will look in that one's parent container,

and so on, until the process instance itself is reached. If the variable cannot be found, a read

access yields null, and a write access produces an error message, with the process continuing

its execution.

Variables can be used in various ways:

• Process-level variables can be set when starting a process by providing a map of parameters

to the invocation of the startProcess method. These parameters will be set as variables on

the process scope.

• Actions can access variables directly, simply by using the name of the variable as a parameter

name.

// call method on the process variable "person"

person.setAge(10);

Changing the value of a variable can be done through the Knowledge Context:

kcontext.setVariable(variableName, value);

• WorkItem and SubFlow nodes can pass the value of parameters to the outside world by mapping

the variable to one of the work item parameters, either by using a parameter mapping or by

interpolating it into a String parameter, using #{expression}. The results of a WorkItem can

also be copied to a variable using a result mapping.

Chapter 4. Rule Flow

36

• Various other nodes can also access data. Event nodes, for example, can store the data

associated to the event in a variable, exception handlers can read error data from a specific

variable, etc. Check the properties of the different node types for more information.

Finally, processes and rules all have access to globals, i.e., globally defined variables that are

considered immutable with regard to rule evaluation, and data in the Knowledge Session. The

Knowledge Session can be accessed in actions using the Knowledge Context:

kcontext.getKnowledgeRuntime().insert(new Person(...));

4.5. Constraints

Constraints can be used in various locations in your processes, for example in a Split node using

OR or XOR decisions, or as a constraint for a State node. Drools Flow supports two types of

constraints:

• Code constraints are boolean expressions, evaluated directly whenever they are reached. We

currently support two dialects for expressing these code constraints: Java and MVEL. Both

Java and MVEL code constraints have direct access to the globals and variables defined in

the process. Here is an example of a valid Java code constraint, person being a variable in

the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

• Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule

Language syntax to express possibly complex constraints. These rules can, like any other rule,

refer to data in the Working Memory. They can also refer to globals directly. Here is an example

of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Actions

37

Rule constraints do not have direct access to variables defined inside the process. It is

however possible to refer to the current process instance inside a rule constraint, by adding

the process instance to the Working Memory and matching for the process instance in your

rule constraint. We have added special logic to make sure that a variable processInstance of

type WorkflowProcessInstance will only match to the current process instance and not to other

process instances in the Working Memory. Note that you are however responsible yourself to

insert the process instance into the session and, possibly, to update it, for example, using Java

code or an on-entry or on-exit or explicit action in your process. The following example of a rule

constraint will search for a person with the same name as the value stored in the variable "name"

of the process:

processInstance : WorkflowProcessInstance()

Person(name == (processInstance.getVariable("name")))

add more constraints here ...

4.6. Actions

Actions can be used in different ways:

• Within an Action node,

• As entry or exit actions, with a number of nodes,

• Actions specifying the behavior of exception handlers.

Actions have access to globals and the variables that are defined for

the process and the predefined variable context. This variable is of type

org.drools.runtime.process.ProcessContext and can be used for several tasks:

• Getting the current node instance (if applicable). The node instance could be queried for data,

such as its name and type. You can also cancel the current node instance.

NodeInstance node = context.getNodeInstance();

String name = node.getNodeName();

• Getting the current process instance. A process instance can be queried for data (name, id,

processId, etc.), aborted or signalled an internal event.

WorkflowProcessInstance proc = context.getProcessInstance();

Chapter 4. Rule Flow

38

proc.signalEvent(type, eventObject);

• Getting or setting the value of variables.

• Accessing the Knowledge Runtime allows you do things like starting a process, signalling

external events, inserting data, etc.

Drools currently supports two dialects, Java and MVEL. Java actions should be valid Java code.

MVEL actions can use the business scripting language MVEL to express the action. MVEL accepts

any valid Java code but additionally provides support for nested accesses of parameters (e.g.,

person.name instead of person.getName()), and many other scripting improvements. Thus,

MVEL expressions are more convenient for the business user. For example, an action that prints

out the name of the person in the "requester" variable of the process would look like this:

// Java dialect

System.out.println(person.getName());

// MVEL dialect

System.out.println(person.name);

4.7. Events

Figure 4.5. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are

executed according to the process plan, by requesting the execution of work items and waiting for

Events

39

the results. However, it is also possible that the process should respond to events that were not

directly requested by the process engine. Explicitly representing these events in a process allows

the process author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own

event types and their associated data.

A process can specify how to respond to events by using Event nodes. An Event node needs

to specify the type of event the node is interested in. It can also define the name of a variable,

which will receive the data that is associated with the event. This allows subsequent nodes in the

process to access the event data and take appropriate action based on this data.

An event can be signalled to a running instance of a process in a number of ways:

• Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or

on-exit action of some node) can signal the occurence of an internal event to the surrounding

process instance, using code like the following:

context.getProcessInstance().signalEvent(type, eventData);

• External event: A process instance can be notified of an event from outside using code such as:

processInstance.signalEvent(type, eventData);

• External event using event correlation: Instead of notifying a process instance directly, it is

also possible to have the engine automatically determine which process instances might be

interested in an event using event correlation, which is based on the event type. A process

instance that contains an event node listening to external events of some type is notified

whenever such an event occurs. To signal such an event to the process engine, write code

such as:

workingMemory.signalEvent(type, eventData);

Events could also be used to start a process. Whenever a Start node defines an event trigger of

a specific type, a new process instance will be started every time that type of event is signalled

to the process engine.

Chapter 4. Rule Flow

40

4.8. Exceptions

Figure 4.6. A sample process using exception handlers

Whenever an exceptional condition occurs during the execution of a process, a fault could be

raised to signal the occurrence of this exception. The process will then search for an appropriate

exception handler that is capable of handling such a fault.

Similar to events, faults also have a type and possibly data associated with the fault. Users are

free to define their own types of faults, together with their data.

Faults are effected by a Fault node, generating a fault of the given type, indicated by the fault

name. If the Fault node specifies a fault variable, the value of the given variable will be associated

with the fault.

Whenever a fault is created, the process will search for an appropriate exception handler that

is capable of handling the given type of fault. Processes and Composite nodes both can define

exception handlers for handling faults. Nesting of exception handlers is allowed; a node will always

search for an appropriate exception handler in its parent container. If none is found, it will look in

that one's parent container, and so on, until the process instance itself is reached. If no exception

handler can be found, the process instance will be aborted, resulting in the cancellation of all

nodes inside the process.

Exception handlers can also specify a fault variable. The data associated with the fault (if any)

will be copied to this variable whenever an exception handler is selected to handle a fault. This

allows subsequent Action nodes in the process to access the fault data and take appropriate

action based on this data.

Timers

41

Exception handlers need to define an action that specifies how to respond to the given fault. In

most cases, the behavior that is needed to react to the given fault cannot be expressed in one

action. It is therefore recommended to have the exception handler signal an event of a specific

type (in this case "Fault") using

context.getProcessInstance().signalEvent("FaultType", context.getVariable("FaultVariable");

4.9. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They cou be

used to specify time supervision, or to trigger certain logic after a certain period, or to repeat some

action at regular intervals.

A Timer node is set up with a delay and a period. The delay specifies the amount of time (in

milliseconds) to wait after node activation before triggering the timer the first time. The period

defines the time between subsequent trigger activations. A period of 0 results in a one-shot timer.

The timer service is responsible for making sure that timers get triggered at the appropriate times.

Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

• A Timer node may be added to the process flow. Its activation starts the timer, and its

triggers, once or repeatedly, activate the Timer node's successor. This means that the outgoing

connection of a timer with a positive perios is triggered multiple times. Cancelling a Timer node

also cancels the associated timer, whereafter no more triggerings will occur.

• Timers may be associated with event-based nodes like WorkItem, SubFlow, etc. A timer

associated with a node is activated whenever the node becomes active. The associated action

is executed whenever the timer triggers. You may use this, for instance, to send out notifications,

at regular intervals, when the execution of a task takes too long, or to signal an event or a fault

in case a time supervision expires. When the node owning the timer completes, the timer is

automatically cancelled.

4.10. Updating processes

Over time, processes may evolve, for example because the process itself needs to be improved, or

due to changing requirements. Actually, you cannot really update a process, you can only deploy

a new version of the process, the old process will still exist. That is because existing process

instances might still need that process definition. So the new process should have a different id,

though the name could be the same, and you can use the version parameter to show when a

process is updated (the version parameter is just a String and is not validated by the process

framework itself, so you can select your own format for specifying minor/major updates, etc.).

Chapter 4. Rule Flow

42

Whenever a process is updated, it is important to determine what should happen to the already

running process instances. There are various strategies one could consider for each running

instance:

• Proceed: The running process instance proceeds as normal, following the process (definition) as

it was defined when the process instance was started. As a result, the already running instance

will proceed as if the process was never updated. New instances can be started using the

updated process.

• Abort (and restart): The already running instance is aborted. If necessary, the process instance

can be restarted using the new process definition.

• Transfer: The process instance is migrated to the new process definition, meaning that - once it

has been migrated successfully - it will continue executing based on the updated process logic.

By default, Drools Flow uses the proceed approach, meaning that multiple versions of the same

process can be deployed, but existing process instances will simply continue executing based

on the process definition that was used when starting the process instance. Running process

instances could always be aborted as well of course, using the process management API. Process

instance migration is more difficult and is explained in the following paragraphs.

4.10.1. Process instance migration

A process instance contains all the runtime information needed to continue execution at some

later point in time. This includes all the data linked to this process instance (as variables), but also

the current state in the process diagram. For each node that is currently active, a node instance is

used to represent this. This node instance can also contain additional state linked to the execution

of that specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,

using id references) that represents the process logic that needs to be followed when executing

this process instance (this clear separation of definition and runtime state allows reuse of the

definition accross all process instances based on this process and minimizes runtime state). As

a result, updating a running process instance to a newer version so it used the new process logic

instead of the old one is simply a matter of changing the referenced process id from the old to

the new id.

However, this does not take into account that the state of the process instance (the variable

instances and the node instances) might need to be migrated as well. In cases where the process

is only extended and all existing wait states are kept, this is pretty straightforward, the runtime

state of the process instance does not need to change at all. However, it is also possible that a

more sofisticated mapping is necessary. For example, when an existing wait state is removed,

or split into multiple wait states, an existing process instance that is waiting in that state cannot

simply be updated. Or when a new process variable is introduced, that variable might need to be

initiazed correctly so it can be used in the remainder of the (updated) process.

Assigning Rules to a Ruleflow Group

43

The WorkflowProcessInstanceUpgrader can be used to upgrade a workflow process instance to a

newer process instance. Of course, you need to provide the process instance and the new process

id. By default, Drools Flow will automatically map old node instances to new node instances with

the same id. But you can provide a mapping of the old (unique) node id to the new node id. The

unique node id is the node id, preceded by the node ids of its parents (with a colon inbetween),

to allow to uniquely identify a node when composite nodes are used (as a node id is only unique

within its node container. The new node id is simply the new node id in the node container (so no

unique node id here, simply the new node id). The following code snippet shows a simple example.

// create the session and start the process "com.sample.ruleflow"

KnowledgeBuilder kbuilder = ...

StatefulKnowledgeSession ksession = ...

ProcessInstance processInstance = ksession.startProcess("com.sample.ruleflow");

// add a new version of the process "com.sample.ruleflow2"

kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(..., ResourceType.DRF);

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// migrate process instance to new version

Map<String, Long> mapping = new HashMap<String, Long>();

// top level node 2 is mapped to a new node with id 3

mapping.put("2", 3L);

// node 2, which is part of composite node 5, is mapped to a new node with id 4

mapping.put("5.2", 4L);

WorkflowProcessInstanceUpgrader.upgradeProcessInstance(

 ksession, processInstance.getId(),

 "com.sample.ruleflow2", mapping);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for

specific situations. Be sure to first disconnect the process instance, change the state accordingly

and then reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader

does it.

4.11. Assigning Rules to a Ruleflow Group

Drools already provides some functionality to define the order in which rules should be executed,

like salience, activation groups, etc. When dealing with potentially many large rule-sets, managing

the order in which rules are evaluated might become complex. Ruleflow allows you to specify the

order in which rule sets should be evaluated by using a flow chart. This allows you to define which

rule sets should be evaluated in sequence or in parallel, to specify conditions under which rule

sets should be evaluated. This chapter contains a few ruleflow examples.

Chapter 4. Rule Flow

44

A ruleflow is a graphical description of a sequence of steps that the rule engine needs to take,

where the order is important. The ruleflow can also deal with conditional branching, parallelism,

and synchonization.

To use a ruleflow to describe the order in which rules should be evaluated, you should first group

rules into ruleflow groups using the ruleflow-group rule attribute ("options" in the GUI). Then

you should create a ruleflow graph (which is a flow chart) that graphically describe the order in

which the rules should be considered, by specifying the order in which the ruleflow-groups should

be evaluated.

rule 'YourRule'

 ruleflow-group 'group1'

when

 ...

then

 ...

end

This rule belongs to the ruleflow-group called "group1".

Rules that are executing as part of a ruleflow-group that is triggered by a process, can also access

the process context in the rule consequence. Through the process context, the process instance

or node instance that triggered the ruleflow-group can be accessed, or variables could be set or

retrieved, e.g.

drools.getContext(ProcessContext.class).getProcessInstance()

4.12. A Simple Ruleflow

Figure 4.7. Ruleflow

The above rule flow specifies that the rules in the group "Check Order" must be executed before

the rules in the group "Process Order". This means that first only rules which are marked as having

a ruleflow-group of "Check Order" will be considered, and then, only if there aren't any more of

those, the rules of "Process Order". That's about it. You could achieve similar results with either

using salience, but this is harder to maintain and makes the time-relationship implicit in the rules,

A Simple Ruleflow

45

or Agenda groups. However, using a ruleflow makes the order of processing explicit, in a layer on

top of the rule structure, so that managing more complex situations becomes much easier.

In practice, if you are using ruleflow, you will most likely be doing more than setting a simple

sequence of groups to progress though. You'll use Split and Join nodes for modeling branches of

processing, and define the flows of control by connections, from the Start to ruleflow groups, to

Splits and then on to more groups, Joins, and so on. All this is done in a grphic editor.

Figure 4.8. Complex ruleflow

The above flow is a more complex example, representing the rule flow for processing an

insurance claim. Initially the claim data validation rules are processed, checking for data integrity,

consistency and completeness. Next, in a Split node, there is a decision based on a condition

based on the value ofthe claim. Processing will either move on to an "auto-settlement" group, or

to another Split node, which checks whether there was a fatality in the incident. If so, it determines

whether the "regular" of fatality specific rules should take effect, with more processing to follow.

Based on a few conditions, many different control flows are possible. Note that all the rules can

be in one package, with the control flow definition being separated from the actual rules.

Figure 4.9. Split types

Chapter 4. Rule Flow

46

To edit Split nodes you click on the node, which will show you a properties panel as shown above.

You then have to choose the type: AND, OR, and XOR. If you choose OR, then any of the "outputs"

of the split can happen, so that processing can proceed, in parallel, along two or more paths. If

you chose XOR, then only one path is chosen.

If you choose OR or XOR, the "Constraints" row will have a square button on the right hand side.

Clickin on this button opens the Constraint editor, where you set the conditions deciding which

outgoing path to follow.

Figure 4.10. Edit constraints

Choose the output path you want to set the constraints for (e.g. Autosettlement), and then you

should see the following constraint editor:

Using Drools 4.x RuleFlow Processes

47

Figure 4.11. Constraint editor

This is a text editor where the constraints - which are like the condition part of a rule - are entered.

These constraints operate on facts in the working memory. In the above example, there is a check

for claims with a value of less than 250. Should this condition be true, then the associated path

will be followed.

4.13. Using Drools 4.x RuleFlow Processes

The XML format that was used in Drools4 to store RuleFlow processes was generated

automatically, using XStream. As a result, it was hard to read by human readers and difficult

to maintain and extend. The new Drools Flow XML format has been created to simplify this.

This however means that, by default, old RuleFlow processes cannot simply be executed on the

Drools5 engine.

Chapter 4. Rule Flow

48

We do however provide a Rule Flow Migrator that allows you to transform your old .rf file

to the new format. It uses an XSLT transformation to generate the new XML based on the

old content. You can use this class to manually transform your old processes to the new

format once when upgrading from Drools4.x to Drools5.x. You can however also let the

KnowledgeBuilder automatically upgrade your processes to the new format when they are

loaded into the Knowledge Base. While this requires a conversion every time the process is

loaded into the Knowledge Base, it does support a more seamless upgrade. To enact this

automatic upgrade you need to set the "drools.ruleflow.port" system property to "true", for

example by adding -Ddrools.ruleflow.port=true when starting your application, or by calling

System.setProperty("drools.ruleflow.port", "true").

The Drools Eclipse plugin also automatically detects if an old RuleFlow file is opened. At that point,

it will automatically perform the conversion and show the result in the graphical editor. You then

need to save this result, either in a new file or overwriting the old one, to retain the old process

in the new format. Note that the plugin does not support editing and saving processes in the old

Drools4.x format.

Chapter 5.

49

Chapter 5. Drools Flow API
The Drools Flow API should be used to (1) create a knowledge base that contains your process

definitions, and to (2) create a session to start new process instances, signal existing ones, register

listeners, etc.

5.1. Knowledge Base

Our knowledge-based API allows you to first create one Knowledge Base that contains all the

necessary knowledge and can be reused across sessions. This knowledge base includes all

your process definitions (and other knowledge types like for example rules). The following code

snippet shows how to create a Knowledge Base consisting of only one process definition, using

a Knowledge Builder to add the resource (from the classpath in this case).

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"), ResourceType.DRF);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Note that the knowledge-based API allows users to add different types of resources, such as

processes and rules, in almost identical ways into the same Knowledge Base. This enables a user

who knows how to use Drools Flow to start using Drools Fusion almost instantaneously, and even

to integrate these different types of Knowledge.

5.2. Session

Next, you should create a session to interact with the engine. The following code snippet shows

how easy it is to create a session based on the earlier created Knowledge Base, and to start a

process (by id).

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

The ProcessRuntime interface defines all the session methods for interacting with processes, as

shown below. Consult the JavaDocs to get a detailed explanation for each of the methods.

ProcessInstance startProcess(String processId);

ProcessInstance startProcess(String processId, Map<String, Object> parameters);

Chapter 5. Drools Flow API

50

void signalEvent(String type, Object event);

void signalEvent(String type, Object event, long processInstanceId);

Collection<ProcessInstance> getProcessInstances();

ProcessInstance getProcessInstance(long id);

void abortProcessInstance(long id);

WorkItemManager getWorkItemManager();

5.3. Events

Both the stateful and stateless knowledge sessions provide methods for registering and removing

listeners. ProcessEventListener objects can be used to listen to process-related events, like

starting or completing a process, entering and leaving a node, etc. Below, the different methods

of a ProcessEventListener are shown. An event object provides access to related information,

like the process instance and node instance linked to the event.

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);

 void afterProcessStarted(ProcessStartedEvent event);

 void beforeProcessCompleted(ProcessCompletedEvent event);

 void afterProcessCompleted(ProcessCompletedEvent event);

 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);

 void afterNodeTriggered(ProcessNodeTriggeredEvent event);

 void beforeNodeLeft(ProcessNodeLeftEvent event);

 void afterNodeLeft(ProcessNodeLeftEvent event);

}

An audit log can be created based on the information provided by these process listeners. We

provide various default logger implementations:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This

log file might then be used in the IDE to generate a tree-based visualization of the events that

occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the

logger or when the number of events in the logger reaches a predefined level, it cannot be

used when debugging processes at runtime. A threaded file logger writes the events to a file

after a specified time interval, making it possible to use the logger to visualize the progress in

realtime, while debugging processes.

Events

51

The KnowledgeRuntimeLoggerFactory lets you add a logger to your session, as shown below.

When creating a console logger, the knowledge session for which the logger needs to be created

must be passed as an argument. The file logger also requires the name of the log file to be created,

and the threaded file logger requires the interval (in milliseconds) after which the events should

be saved.

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");

// add invocations to the process engine here,

// e.g. ksession.startProcess(processId);

...

logger.close();

The log file can be opened in Eclipse, using the Audit View in the Drools Eclipse plugin, where the

events are visualized as a tree. Events that occur between the before and after event are shown

as children of that event. The following screenshot shows a simple example, where a process is

started, resulting in the activation of the Start node, an Action node and an End node, after which

the process was completed.

52

Chapter 6.

53

Chapter 6. Persistence
Drools Flow allows the persistent storage of certain information, i.e., the process runtime state,

the process definitions and the history information.

6.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution

of the process in that specific context. For example, when executing a process that specifies

how to process a sales order, one process instance is created for each sales request. The

process instance represents the current execution state in that specific context, and contains all

the information related to that process instance. Note that it only contains the minimal runtime

state that is needed to continue the execution of that process instance at some later time, but it

does not include information about the history of that process instance if that information is no

longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.

This allows to restore the state of execution of all running processes in case of unexpected failure,

or to temporarily remove running instances from memory and restore them at some later time.

Drools Flow allows you to plug in different persistence strategies. By default, if you do not configure

the process engine otherwise, process instances are not made persistent.

6.1.1. Binary Persistence

Drools Flow provides a binary persistence mechanism that allows you to save the state of a

process instance as a binary dataset. This way, the state of all running process instances can

always be stored in a persistent location. Note that these binary datasets usually are relatively

small, as they only contain the minimal execution state of the process instance. For a simple

process instance, this usually contains one or a few node instances, i.e., any node that is currently

executing, and, possibly, some variable values.

6.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the

process engine. Whenever a process instance is executing, after its start or continuation from a

wait state, the engine proceeds until no more actions can be performed. At that point, the engine

has reached the next safe state, and the state of the process instance and all other process

instances that might have been affected is stored persistently.

6.1.3. Configuring Persistence

By default, the engine does not save runtime data persistently. It is, however, pretty straightforward

to configure the engine to do this, by adding a configuration file and the necessary dependencies.

Persistence itself is based on the Java Persistence API (JPA) and can thus work with several

persistence mechanisms. We are using Hibernate by default, but feel free to employ alternatives.

Chapter 6. Persistence

54

A H2 database is used underneath to store the data, but you mighto choose your own alternative

for this, too.

First of all, you need to add the necessary dependencies to your classpath. If you're using

the Eclipse IDE, you can do that by adding the jar files to your Drools runtime directory (cf.

chapter “Drools Eclipse IDE Features”), or by manually adding these dependencies to your

project. First of all, you need the jar file drools-persistence-jpa.jar, as that contains code for

saving the runtime state whenever necessary. Next, you also need various other dependencies,

depending on the persistence solution and database you are using. For the default combination

with Hibernate as the JPA persistence provider, the H2 database and Bitronix for JTA-based

transaction management, the following list of dependencies is needed:

1. drools-persistence-jpa (org.drools)

2. persistence-api-1.0.jar (javax.persistence)

3. hibernate-entitymanager-3.4.0.GA.jar (org.hibernate)

4. hibernate-annotations-3.4.0.GA.jar (org.hibernate)

5. hibernate-commons-annotations-3.1.0.GA.jar (org.hibernate)

6. hibernate-core-3.3.0.SP1.jar (org.hibernate)

7. dom4j-1.6.1.jar (dom4j)

8. jta-1.0.1B.jar (javax.transaction)

9. btm-1.3.2.jar (org.codehaus.btm)

10.javassist-3.4.GA.jar (javassist)

11.slf4j-api-1.5.2.jar (org.slf4j)

12.slf4j-jdk14-1.5.2.jar (org.slf4j)

13.h2-1.0.77.jar (com.h2database)

14.commons-collections-3.2.jar (commons-collections)

Next, you need to configure the Drools engine to save the state of the engine whenever

necessary. The easiest way to do this is to use JPAKnowledgeService to create your knowledge

session, based on a Knowledge Base, a Knowledge Session Configuration (if necessary) and an

environment. The environment needs to contain a reference to your Entity Manager Factory.

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.drools.persistence.jpa");

Configuring Persistence

55

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

int sessionId = ksession.getId();

// invoke methods on your method here

ksession.startProcess("MyProcess");

ksession.dispose();

You can also yse the JPAKnowledgeService to recreate a session based on a specific session id:

// recreate the session from database using the sessionId

ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process

instance at some later point. This means, for example, that it does not contain information about

already executed nodes if that information is no longer relevant, or that process instances that

have been completed or aborted are removed from the database. If you want to search for history-

related information, you should use the history log, as explained later.

By default, drools-persistence-jpa.jar contains a configuration file that configures JPA to

use Hibernate and the H2 database, called persistence.xml in the META-INF directory, as

shown below. You will need to override these defaults if you want to change them, by adding your

own persistence.xml in your classpath, preceding the default one in drools-persistence-

jpa.jar. Refer to the JPA and Hibernate documentation for more information on how to do this.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

Chapter 6. Persistence

56

 <persistence-unit name="org.drools.persistence.jpa">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/processInstanceDS</jta-data-source>

 <class>org.drools.persistence.session.SessionInfo</class>

 <class>org.drools.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.processinstance.ProcessInstanceEventInfo</class>

 <class>org.drools.persistence.processinstance.WorkItemInfo</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup"/>

 </properties>

 </persistence-unit>

</persistence>

This configuration file refers to a data source called "jdbc/processInstanceDS". The following Java

fragment could be used to set up this data source, where we are using the file-based H2 database.

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/processInstanceDS");

ds.setClassName("org.h2.jdbcx.JdbcDataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:file:/NotBackedUp/data/process-instance-db");

ds.init();

6.1.4. Transactions

Whenever you do not provide transaction boundaries inside your application, the engine will

automatically execute each method invocation on the engine in a separate transaction. If this

behavior is acceptable, you don't need to do anything else. You can, however, also specify the

transaction boundaries yourself. This allows you, for example, to combine multiple commands

into one transaction.

Process Definitions

57

You need to register a transaction manager at the environment before using user-defined

transactions. The following sample code uses the Bitronix transaction manager. Next, we use the

Java Transaction API (JTA) to specify transaction boundaries, as shown below:

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.drools.persistence.jpa");

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

env.set(EnvironmentName.TRANSACTION_MANAGER,

 TransactionManagerServices.getTransactionManager());

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// start the transaction

UserTransaction ut =

 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

ut.begin();

// perform multiple commands inside one transaction

ksession.insert(new Person("John Doe"));

ksession.startProcess("MyProcess");

ksession.fireAllRules();

// commit the transaction

ut.commit();

6.2. Process Definitions

Process definition files are usually written in an XML format. These files can easily be stored on a

file system during development. However, whenever you want to make your knowledge accessible

to one or more engines in production, we recommend using a knowledge repository that (logically)

centralizes your knowledge in one or more knowledge repositories.

Guvnor is a sub-project that provides exactly that. It consists of a repository for storing different

kinds of Knowledge, not only process definitions but also rules, object models, etc. It allows easy

retrieval of this knowledge using WebDAV or by employing a Knowledge Agent that automatically

downloads the information from Guvnor when creating a Knowledge Base, and provides a

web application that allows business users to view and possibly update the information in the

Chapter 6. Persistence

58

Knowledge Repository. Check out the Drools Guvnor documentation for more information on how

to do this.

6.3. History Log

In many cases it is useful (if not necessary) to store information about the execution of process

instances, so that this information can be used afterwards, for example, to verify what actions

have been executed for a particular process instance, or to monitor and analyze the efficiency

of a particular process. Storing history information in the runtime database is usually not a good

idea, as this would result in ever-growing runtime data, and monitoring and analysis queries

might influence the performance of your runtime engine. That is why history information about the

execution of process instances is stored separately.

This history log of execution information is created based on the events generated by the process

engine during execution. The Drools runtime engine provides a generic mechanism to listen to

different kinds of events. The necessary information can easily be extracted from these events

and made persistent, for example in a database. Filters can be used to only store the information

you find relevant.

6.3.1. Storing Process Events in a Database

The drools-bam module contains an event listener that stores process-related information in a

database using Hibernate. The database contains two tables, one for process instance information

and one for node instance information (see the figure below):

1. ProcessInstanceLog: This lists the process instance id, the process (definition) id, the start date

and (if applicable) the end date of all process instances.

2. NodeInstanceLog: This table contains more detailed information about which nodes were

actually executed inside each process instance. Whenever a node instance is entered from

one of its incomming connections or is exited through one of its outgoing connections, that

information is stored in this table. For this, it stores the process instance id and the process id

of the process instance it is being executed in, and the node instance id and the corresponding

node id (in the process definition) of the node instance in question. Finally, the type of event (0

= enter, 1 = exit) and the date of the event is stored as well.

To log process history information in a database like this, you need to register the logger on your

session (or working memory) like this:

Storing Process Events in a Database

59

StatefulKnowledgeSession ksession = ...;

WorkingMemoryDbLogger logger = new WorkingMemoryDbLogger(ksession);

// invoke methods one your session here

logger.dispose();

Note that this logger is like any other audit logger, which means that you can add one or more

filters by calling the method addFilterd to ensure that only relevant information is stored in the

database. Only information accepted by all your filters will appear in the database. You should

dispose the logger when it is no longer needed.

To specify the database where the information should be stored, modify the file

hibernate.cfg.xml file. By default, it uses a memory-resident database (H2). Consult the

Hibernate documentation if you do not know how to do this.

All this information can easily be queried and used in a lot of different use cases,

ranging from creating a history log for one specific process instance to analyzing the

performance of all instances of a specific process. Class ProcessInstanceDbLog (in package

org.drools.process.audit) shows some examples on how to retrieve all process instances,

one specific process instance (by id), all process instances for one specific process, all node

instances of a specific process instance, etc. You can of course easily create your own Hibernate

queries, or access the information in the database directly.

By default, the audit logger uses the H2 memory-resident database that is recreated on startup.

You can change this default by including your own configuration file hibernate.cfg.xml.

This allows you, for example, to change the underlying database, etc. Refer to the Hibernate

documentation for more information on how to do this.

60

Chapter 7.

61

Chapter 7. Drools Flow Process

Model

Chapter 7. Drools Flow Proces...

62

Chapter 8.

63

Chapter 8. Rules and Processes
Drools Flow is a workflow and process engine that allows advanced integration of processes

and rules. This chapter discusses the integration of rules and processes, ranging from simple to

advanced scenarios.

8.1. Why Use Rules in Processes?

Workflow languages that depend purely on process constructs (like nodes and connections)

to describe the business logic of applications tend to be quite complex. While these workflow

constructs are very well suited to describe the overall control flow of an application, it can be very

difficult to describe complex logic and exceptional situations. Therefore, executable processes

tend to become very complex. We believe that, by extending a process engine with support for

declarative rules in combination with these regular process constructs, this complexity can be kept

under control.

1. Simplicity: Complex decisions are usually easier to specify using a set of rules. Rules can

pinpoint complex business logic more easily, using their advanced constraint language. Multiple

rules can be combined, each describing a part of the business logic.

2. Agility: Rules and processes can have a separate life cycle. This means that we can change the

rules describing some crucial decision points without having to change the process itself. Rules

can be added, removed or modified to fine-tune the behavior of the process to the constantly

evolving requirements and environment.

3. Different scope: Rules can be reused across processes or outside processes. Therefore, your

business logic is not locked inside your processes.

4. Declarativeness: Focus on describing "what" instead of "how".

5. Granularity: It is easy to write simple rules that handle specific circumstances. Processes are

more suited to describe the overall control flow but tend to become very complex if they also

need to describe a lot of exceptional situations.

6. Data-centric: Rules can easily handle large data sets.

7. Performance: Rule evaluation is optimized.

8. Advanced condition and action language: Rule languages support advanced features like

custom functions, collections, conditional elements, including quantifiers, etc.

9. High-level: By using DSLs, business editors, decision tables, and decision trees, your business

logic could be described in a way that can be understood (and possibly even modified) by

business users.

Chapter 8. Rules and Processes

64

8.2. Why Integrate Rules and Processes in a Single

Engine?

Drools Flow combines a process and a rules engine in one software product. This offers several

advantages, compared to trying to loosely couple an existing process and rules product.

1. Simplicity: Easier for end user to combine both rules and processes.

2. Encapsulation: Sometimes close integration between processes and rules is beneficial.

3. Performance: No unnecessary passing, transformation or synchronization of data

4. Learning curve: Easier to learn one product.

5. Manageability: Easier to manage one product, rules and processes can be similar artefacts in

a larger knowledge repository.

6. Integration of features: We provide an integrated IDE, audit log, web-based management

platform, repository, debugging, etc.

8.3. Approach

Workflow languages describe the order in which activities should be performed using a flow

chart. A process engine is responsible for selecting which activities should be executed based

on the current state of the executing processes. On the other hand, rules are composed of a set

of conditions that describe when a rule is applicable and an action that is executed when the

conditions are met. The rules engine is then responsible for evaluating and executing the rules. It

decides which rules need to be executed based on the current state of the application.

Workflow processes are very good at describing the overall control flow of (possibly long-running)

applications. However, processes that are used to define complex business decisions, to handle a

lot of exceptional situations, and need to respond to various external events tend to become very

complex indeed. Rules are very good at describing complex decisions and reasoning about large

amounts of data or events. It is, however, not trivial to define long-running processes using rules.

Teaching a Rules Engine About Processes

65

In the past, users were forced to choose between defining their business logic using either a

process or a rules engine. Problems that required complex reasoning about large amounts of

data used a rules engine, while users that wanted to focus on describing the control flow of their

processes were forced to use a process engine. However, businesses nowadays might want to

combine both processes and rules in order to be able to define all their business logic in the format

that best suits their needs.

Basically, both a rules and a process engine will derive the next steps that need to be executed by

looking at its Knowledge Base (a set of rules or processes, respectively) and the current known

state of the application (the data in the Working Memory or the state of the executing process

instances, respectively). If we want to integrate rules and processes, we need an engine that can

decide the next steps taking into account the logic that is defined inside both the processes and

the rules.

8.3.1. Teaching a Rules Engine About Processes

It is very difficult (and probably very inefficient as well) to extend a process engine to also take rules

into account. The process engine would need to check for rules that might need to be executed at

every step and would have to keep the data that is used by the rules engine up to date. However, it

is not that difficult to "teach" a rules engine about processes. If the current state of the processes is

also inserted as part of the Working Memory data the rules engine reasons about, and we instruct

the rules engine how to derive the next steps of an executing process, the rules engine will then

be able to derive the next steps taking rules and processes into account jointly.

8.3.2. Inversion of Control

From the process perspective, this means that there is an inversion of control. A normal process

engine exercises full control, deriving the next steps based on the current state of the process

instance. If needed, it can contact external services to retrieve additional information, but it solely

decides which steps to take, and is alone responsible for executing these steps.

However, only our extended rules engine (that can reason jointly about rules and processes) is

capable of deriving the next steps taking both rules and processes into account. If a part of the

process needs to be executed, the rules engine will request the process engine to execute this

step. Once this step has been performed, the process engine returns control to the rules engine

to again derive the next steps. This means that the control on what to do next has been inverted:

the process engine itself no longer decides the next step to take but our enhanced rules engine

will be in control, notifying the process engine what to execute next, and when.

8.4. Example

The drools-examples project contains a sample process

(org.drools.examples.process.order) that illustrates some of the advantages of being able to

combine processes and rules. This process describes an order application where incoming orders

are validated, discounts are calculated and shipping of the goods is requested.

Chapter 8. Rules and Processes

66

Evaluating a Set of Rules in Your Process

67

8.4.1. Evaluating a Set of Rules in Your Process

Drools Flow can easily include a set of rules as part of the process. The rules that need to

be evaluated should be grouped in a ruleflow group, using the ruleflow-group rule attribute.

Activating a RuleSet node for the group triggers the evaluation of these rules in your process. This

example uses two RuleSet nodes in the process: one for the validation of the order and one for

calculating the discount. For example, one of the rules for validiting an order is shown below. Note

the ruleflow-group attribute, which ensures that this rule is evaluated as part of the RuleSet

node with the same ruleflow group shown in the figure.

rule "Invalid item id"

 ruleflow-group "validate"

 lock-on-active true

when

 o: Order()

 i: Order.OrderItem() from o.getOrderItems()

 not (Item() from itemCatalog.getItem(i.getItemId()))

then

 System.err.println("Invalid item id found!");

 o.addError("Invalid item id " + i.getItemId());

end

Figure 8.1. RuleSet node and one of its rules

Chapter 8. Rules and Processes

68

8.4.2. Using Rules for Evaluating Constraints

Rules can be used for expressing and evaluating complex constraints in your process. For

example, when to decide about the choice of the execution path at a Split node, rules could be

used to define these conditions. Similarly, a Wait state could use a rule to define the wait duration.

This example uses rules for deciding the next action after validating the order. If the order contains

errors, a sales representative should try to correct the order. Orders with a value > 1000$ are

more important, so that a senior sales representative should attend to the order. All other orders

should just proceed normally. A decision node is used to select one of these alternatives, and

rules are used to describe the constraints for each of them.

Using Rules for Evaluating Constraints

69

Chapter 8. Rules and Processes

70

8.4.3. Assignment Rules

Human tasks can be used in a process to describe work that needs to be executed by a human

actor. The selection of the actor could be based on the current state of the process and the

history. Assignment rules describe how to determine the actor, based on this information. These

assignment rules will then be applied automatically whenever a new human task needs to be

executed.

Note that the rules shown below are written in a Domain Specific Language (DSL), tailored to the

specific requirements for formulating conditions in the order processing environment.

/********** Generic assignment rules **********/

rule "Assign 'Correct Order' to any sales representative"

 salience 30

 when

 There is a human task

 - with task name "Correct Order"

 - without actor id

 then

 Set actor id "Sales Representative"

end

/********** Assignment rules for the RuleSetExample process **********/

rule "Assign 'Follow-up Order' to a senior sales representative"

 salience 40

 when

 Process "org.drools.examples.process.ruleset.RuleSetExample" contains a human task

 - with task name "Follow-up Order"

 - without actor id

 then

 Set actor id "Senior Sales Representative"

end

8.4.4. Describing Exceptional Situations Using Rules

Rules can be used for describing exceptional situations and how to respond to these situations.

Adding all this information in the control flow of the regular process makes the basic process

much more complex. Rules can be used to handle each of these situations separately, leaving

the core process in its simple form. It also makes it much easier to adapt existing processes to

take previously unanticipated events into account.

Modularizing Concerns Using Rules

71

8.4.5. Modularizing Concerns Using Rules

The process defines the overall control flow. Rules could be used to add additional concerns to this

process without making the overall control flow more complex. For example, rules could be defined

to log certain information during the execution of the process. The original process is not altered,

whereas all logging functionality is cleanly modularized as a set of rules. This greatly improves

reusability, allowing users to easily apply the same strategy to different processes, readability (by

not altering the control flow of the original process) and maintainability, due to the separation of

the logging strategy rules from those of the process itself.

8.4.6. Rules for Altering Process Behavior Dynamically

Rules let you dynamically fine-tune the behavior of your processes. Imagine that a problem is

encountered, at runtime, with one of the processes. Now, new rules could be added, at runtime,

to log additional information or for handling specific process states. Once the problem is solved or

the circumstances have changed, these rules can easily be removed again. Based on the current

status, different strategies could be selected dynamically. For example, based on the current load

of all the services, rules could be used to optimize the process to the current load. This process

contains a simple example that allows you to dynamically add or remove logging for the "Check

Order" task. When the "Debugging output" checkbox in the main application window is checked,

the rule shown below is loaded dynamically, to write log output to the console whenever the "Check

Order" task is requested. Unchecking the box will dynamically remove the rule again.

rule "Log the execution of 'Correct Order'"

 salience 25

when

 workItemNodeInstance: WorkItemNodeInstance(workItemId <= 0, node.name == "Correct

 Order")

 workItem: WorkItemImpl(state == WorkItemImpl.PENDING) from

 workItemNodeInstance.getWorkItem()

then

 ProcessInstance proc = workItemNodeInstance.getProcessInstance();

 VariableScopeInstance variableScopeInstance =

 (VariableScopeInstance)proc.getContextInstance(VariableScope.VARIABLE_SCOPE);

 System.out.println("LOGGING: Requesting the correction of " +

 variableScopeInstance.getVariable("order"));

end

8.4.7. Integrated Tooling

Processes and rules are integrated in the Drools Eclipse IDE. Both processes and rules are

simply considered as different types of business logic, to be managed almost identically. For

Chapter 8. Rules and Processes

72

example, loading a process or a set of rules into the engine is very similar. Also, different rule

implementations, such DRL or DSL, are handled in a uniform way.

private static KnowledgeBase createKnowledgeBase() throws Exception {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource(

 "RuleSetExample.rf", OrderExample.class), ResourceType.DRF);

 kbuilder.add(ResourceFactory.newClassPathResource(

 "workflow_rules.drl", OrderExample.class), ResourceType.DRL);

 kbuilder.add(ResourceFactory.newClassPathResource(

 "assignment.dsl", OrderExample.class), ResourceType.DSL);

 kbuilder.add(ResourceFactory.newClassPathResource(

 "assignment.dslr", OrderExample.class), ResourceType.DSLR);

 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

 kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

 return kbase;

}

Our audit log also contains an integrated view, showing how rules and processes are influencing

each other. For example, a part of the log shows how rule "5% discount" is executed as part of

the node "Calculate Discount".

8.4.8. Domain-specific Rules and Processes

Rules do not need to be defined using the core rule language syntax, but they also can be

defined using our more advanced rule editors, using domain-specific languages, decision tables,

guided editors, etc. Our example defines a domain-specific language for describing assignment

rules, based on the type of task, its properties, the process it is defined in, etc. This makes the

assignment rules much more understandable for non-experts.

/********** Generic assignment rules **********/

Domain-specific Rules and Processes

73

rule "Assign 'Correct Order' to any sales representative"

 salience 30

 when

 There is a human task

 - with task name "Correct Order"

 - without actor id

 then

 Set actor id "Sales Representative"

end

/********** Assignment rules for the RuleSetExample process **********/

rule "Assign 'Follow-up Order' to a senior sales representative"

 salience 40

 when

 Process "org.drools.examples.process.ruleset.RuleSetExample" contains a human task

 - with task name "Follow-up Order"

 - without actor id

 then

 Set actor id "Senior Sales Representative"

end

74

Chapter 9.

75

Chapter 9. Domain-specific

processes

9.1. Introduction

One of the goals of our unified rules and processes framework is to allow users to extend the

default programming constructs with domain-specific extensions that simplify development in a

particular application domain. While Drools has been offering constructs to create domain-specific

rule languages for some time now, this tutorial describes our first steps towards domain-specific

process languages.

Most process languages offer some generic action (node) construct that allows plugging in custum

user actions. However, these actions are usually low-level, where the user is required to write

custom code to implement the work that should be incorporated in the process. The code is also

closely linked to a specific target environment, making it difficult to reuse the process in different

contexts.

Domain-specific languages are targeted to one particular application domain and therefore can

offer constructs that are closely related to the problem the user is trying to solve. This makes

the processes and easier to understand and self-documenting. We will show you how to define

domain-specific work items, which represent atomic units of work that need to be executed. These

work items specify the work that should be executed in the context of a process in a declarative

manner, i.e. specifying what should be executed (and not how) on a higher level (no code) and

hiding implementation details.

So we want work items that are:

1. domain-specific

2. declarative (what, not how)

3. high-level (no code)

4. customizable to the context

Users can easily define their own set of domain-specific work items and integrate them in

our process language(s). For example, the next figure shows an example of a process in a

healthcare context. The process includes domain-specific work items for ordering nursing tasks

(e.g. measuring blood pressure), prescribing medication and notifying care providers.

Chapter 9. Domain-specific pr...

76

9.2. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work

item represent an atomic unit of work in a declarative way. It is defined by a unique name and

additional parameters that can be used to describe the work in more detail. Work items can also

return information after they have been executed, specified as results. Our notification work item

could thus be defined using a work definition with four parameters and no results:

 Name: "Notification"

 Parameters

 From [String]

 To [String]

 Message [String]

 Priority [String]

9.2.1. Creating the work definition

All work definitions must be specified in one or more configuration files in the project classpath,

where all the properties are specified as name-value pairs. Parameters and results are maps

where each parameter name is also mapped to the expected data type. Note that this configuration

file also includes some additional user interface information, like the icon and the display name

Registering the work definition

77

of the work item. (We use MVEL for reading in the configuration file, which allows us to do more

advanced configuration files). Our MyWorkDefinitions.conf file looks like this:

import org.drools.process.core.datatype.impl.type.StringDataType;

[

 // the Notification work item

 [

 "name" : "Notification",

 "parameters" : [

 "Message" : new StringDataType(),

 "From" : new StringDataType(),

 "To" : new StringDataType(),

 "Priority" : new StringDataType(),

],

 "displayName" : "Notification",

 "icon" : "icons/notification.gif"

]

]

9.2.2. Registering the work definition

The Drools Configuration API can be used to register work definition files for your project using

the drools.workDefinitions property, which represents a list of files containing work definitions

(separated usings spaces). For example, include a drools.rulebase.conf file in the META-INF

directory of your project and add the following line:

 drools.workDefinitions = MyWorkDefinitions.conf

9.2.3. Using your new work item in your processes

Once our work definition has been created and registered, we can start using it in our processes.

The process editor contains a separate section in the palette where the different work items that

have been defined for the project appear.

Chapter 9. Domain-specific pr...

78

Using drag and drop, a notification node can be created inside your process. The properties can

be filled in using the properties view.

Apart from the properties defined by for this work item, all work items also have these three

properties:

1. Parameter Mapping: Allows you map the value of a variable in the process to a parameter of

the work item. This allows you to customize the work item based on the current state of the

actual process instance (for example, the priority of the notification could be dependent of some

process-specific information).

Executing work items

79

2. Result Mapping: Allows you to map a result (returned once a work item has been executed) to

a variable of the process. This allows you to use results in the remainder of the process.

3. Wait for completion: By default, the process waits until the requested work item has been

completed before continuing with the process. It is also possible to continue immediately

after the work item has been requested (and not waiting for the results) by setting "wait for

completion" to false.

9.2.4. Executing work items

The Drools engine contains a WorkItemManager that is responsible for executing work items

whenever necessary. The WorkItemManager is responsible for delegating the work items to

WorkItemHandlers that execute the work item and notify the WorkItemManager when the work

item has been completed. For executing notification work items, a NotificationWorkItemHandler

should be created (implementing the WorkItemHandler interface):

package com.sample;

import org.drools.process.instance.WorkItem;

import org.drools.process.instance.WorkItemHandler;

import org.drools.process.instance.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

 // extract parameters

 String from = (String) workItem.getParameter("From");

 String to = (String) workItem.getParameter("To");

 String message = (String) workItem.getParameter("Message");

 String priority = (String) workItem.getParameter("Priority");

 // send email

 EmailService service = ServiceRegistry.getInstance().getEmailService();

 service.sendEmail(from, to, "Notification", message);

 // notify manager that work item has been completed

 manager.completeWorkItem(workItem.getId(), null);

 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

 // Do nothing, notifications cannot be aborted

 }

}

Chapter 9. Domain-specific pr...

80

This WorkItemHandler sends a notification as an email and then immediate notifies the

WorkItemManager that the work item has been completed. Note that not all work items can be

completed directly. In cases where executing a work item takes some time, execution can continue

asynchronously and the work item manager can be notified later. In these situations, it might also

be possible that a work item is being aborted before it has been completed. The abort method

can be used to specify how to abort such work items.

WorkItemHandlers should be registered at the WorkItemManager, using the following API:

 workingMemory.getWorkItemManager().registerWorkItemHandler(

 "Notification", new NotificationWorkItemHandler());

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

2. Changes to the environment can be implemented by adapting the work item handler. The

process itself should not be changed. It is also possible to use the same process in different

environments, where the work item handler is responsible for integrating with the right services.

3. It is easy to share work item handlers across processes and projects (which would be more

difficult if the code would be embedded in the process itself).

4. Different work item handlers could be used depending on the context. For example, during

testing or simulation, it might not be necessary to actually execute the work items. The next

section shows an example of how to use specialized work item handlers during testing.

9.3. Testing processes using work items

Customizable execution depending on context, easier to manage changes in environment

(by changing handler), sharing processes accross contexts (using different handlers), testing,

simulation (custom test handlers)

9.4. Future

Our process framework is based on the (already well-known) idea of a Process Virtual Machine

(PVM), where the process framework can be used as a basis for multiple process languages. This

allows users to more easily create their own process languages, where common services provided

by the process framework (e.g. persistence, audit) can be (re)used by the process language

designer. Processes are represented as a graph of nodes, each node describing a part of the

process logic. Different types of nodes are used for expressing different kinds of functionality,

like creating or merging parallel flows (split and join), invoking a sub process, invoking external

services, etc. One of our goals is creating a truly pluggable process language, where language

designers can easily plug in their own node implementations.

Chapter 10.

81

Chapter 10. Human Tasks
An important aspect of work flow and BPM (business process management)is human task

management. While some of the work performed in a process can be executed automatically,

some tasks need to be executed with the interaction of human actors. Drools Flow supports the

use of human tasks inside processes using a special human task node that will represent this

interaction. This node allows process designers to define the type of task, the actor(s), the data

associated with the task, etc. We also have implemented a task service that can be used to

manage these human tasks. Users are however open to integrate any other solution if they want

to, as this is fully pluggable.

To start using human tasks inside your processes, you first need to (1) include human task nodes

inside your process, (2) integrate a task management component of your choice (e.g. the WS-HT

implementation provided by us) and (3) have end users interact with the human task management

component using some kind of user interface. These elements will be discussed in more detail

in the next sections.

10.1. Human tasks inside processes

Drools Flow supports the use of human tasks inside processes using a special human task node

(as shown in the figure above). A human task node represents an atomic task that needs to be

executed by a human actor. Although Drools Flow has a special human task node for including

human tasks inside a process, human tasks are simply considered as any other kind of external

service that needs to be invoked and are therefore simply implemented as a special kind of work

item. The only thing that is special about the human task node is that we have added support for

swimlanes, making it easier to assign tasks to users (see below). A human task node contains

the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

Chapter 10. Human Tasks

82

• Skippable: Specifies whether the human task can be skipped (i.e. the actor decides not to

execute the human task).

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See below for more detail on how to use swimlanes.

• Wait for completion: If this property is true, the human task node will only continue if the human

task has been terminated (i.e. completed or any other terminal state); otherwise it will continue

immediately after creating the human task.

• On-entry and on-exit actions: Actions that are executed upon entry and exit of this node.

• Parameter mapping: Allows copying the value of process variables to parameters of the human

task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. Note that can only use

result mappings when "Wait for completion" is set to true. A human task has a result variable

"Result" that contains the data returned by the human actor. The variable "ActorId" contains the

id of the actor that actually executed the task.

• Timers: Timers that are linked to this node (see the 'timers' section for more details).

• ParentId: Allows to specify the parent task id, in the case that this task is a sub task of another.

(see the 'sub task' section for more details)

You can edit these variables in the properties view (see below) when selecting the human task

node, or the most important properties can also be edited by double-clicking the human task node,

after which a custom human task node editor is opened, as shown below as well.

Human tasks inside processes

83

Chapter 10. Human Tasks

84

Note that you could either specify the values of the different parameters (actorId, priority, content,

etc.) directly (in which case they will be the same for each execution of this process), or make

them context-specific, based on the data inside the process instance. For example, parameters

of type String can use #{expression} to embed a value in the String. The value will be retrieved

when creating the work item and the #{...} will be replaced by the toString() value of the variable.

The expression could simply be the name of a variable (in which case it will be resolved to

the value of the variable), but more advanced MVEL expressions are possible as well, like

#{person.name.firstname}. For example, when sending an email, the body of the email could

contain something like "Dear #{customer.name}, ...". For other types of variables, it is possible to

map the value of a variable to a parameter using the parameter mapping.

10.1.1. Swimlanes

Human task nodes can be used in combination with swimlanes to assign multiple human tasks

to the similar actors. Tasks in the same swimlane will be assigned to the same actor. Whenever

the first task in a swimlane is created, and that task has an actorId specified, that actorId will be

Human task management component

85

assigned to the swimlane as well. All other tasks that will be created in that swimlane will use that

actorId as well, even if an actorId has been specified for the task as well.

Whenever a human task that is part of a swimlane is completed, the actorId of that swimlane is

set to the actorId that executed that human task. This allows for example to assign a human task

to a group of users, and to assign future tasks of that swimlame to the user that claimed the first

task. This will also automatically change the assignment of tasks if at some point one of the tasks

is reassigned to another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the

"Swimlane" parameter of the human task node. A process must also define all the swimlanes that

it contains. To do so, open the process properties by clicking on the background of the process

and click on the "Swimlanes" property. You can add new swimlanes there.

10.2. Human task management component

As far as the Drools Flow engine is concerned, human tasks are similar to any other external

service that needs to be invoked and are implemented as an extension of normal work items. As

a result, the process itself only contains an abstract description of the human tasks that need to

be executed, and a work item handler is responsible for binding this abstract tasks to a specific

implementation. Using our pluggable work item handler approach (see the chapter on domain-

specific processes for more details), users can plug in any back-end implementation.

We do however provide an implementation of such a human task management component based

on the WS-HumanTask specification. If you do not have the requirement to integrate a specific

human task component yourself, you can use this service. It manages the task life cycle of the

tasks (creation, claiming, completion, etc.) and stores the state of the task persistently. It also

supports features like internationalization, calendar integration, different types of assignments,

delegation, deadlines, etc.

Because we did not want to implement a custom solution when a standard is available,

we chose to implement our service based on the WS-HumanTask (WS-HT) specification.

This specification defines in detail the model of the tasks, the life cycle, and a lot of

other features as the ones mentioned above. It is pretty comprehensive and can be

found here [http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-

HumanTask_v1.pdf].

10.2.1. Task life cycle

Looking from the perspective of the process, whenever a human task node is triggered during the

execution of a process instance, a human task is created. The process will only continue from

that point when that human task has been completed or aborted (unless of course you specify

that the process does not need to wait for the human task to complete, by setting the "Wait for

completion" property to true). However, the human task usually has a separate life cycle itself.

We will now shortly introduce this life cycle, as shown in the figure below. For more details, check

out the WS-HumanTask specification.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Chapter 10. Human Tasks

86

Whenever a task is created, it starts in the "Created" stage. It usually automatically transfers to

the "Ready" state, at which point the task will show up on the task list of all the actors that are

allowed to execute the task. There, it is waiting for one of these actors to claim the task, indicating

that he or she will be executing the task. Once a user has claimed a task, the status is changed

to "Reserved". Note that a task that only has one potential actor will automatically be assigned

to that actor upon creation of that task. After claiming the task, that user can then at some point

decide to start executing the task, in which case the task status is changed to "InProgress". Finally,

once the task has been performed, the user must complete the task (and can specify the result

data related to the task), in which case the status is changed to "Completed". If the task could

not be completed, the user can also indicate this using a fault response (possibly with fault data

associated), in which case the status is changed to "Failed".

The life cycle explained above is the normal life cycle. The service also allows a lot of other life

cycle methods, like:

• Delegating or forwarding a task, in which case it is assigned to another actor

• Revoking a task, so it is no longer claimed by one specific actor but reappears on the task list

of all potential actors

• Temporarly suspending and resuming a task

• Stopping a task in progress

Linking the task component to the Drools Flow engine

87

• Skipping a task (if the task has been marked as skippable), in which case the task will not be

executed

10.2.2. Linking the task component to the Drools Flow engine

The task management component needs to be integrated with the Drools Flow engine just like

any other external service, by registering a work item handler that is responsible for translating the

abstract work item (in this case a human task) to a specific invocation. We have implemented such

a work item handler (org.drools.process.workitem.wsht.WSHumanTaskHandler in the drools-

process-task module) so you can easily link this work item handler like this:

 StatefulKnowledgeSession session = ...;

 session.getWorkItemManager().registerWorkItemHandler("Human Task", new

 WSHumanTaskHandler());

By default, this handler will connect to the human task management component on the local

machine on port 9123, but you can easily change that by invoking the setConnection(ipAddress,

port) method on the WSHumanTaskHandler.

At this moment WSHumanTaskHandler is using Mina (http://mina.apache.org/) [http://

mina.apache.org/] for testing the behavior in a client/server architecture. Mina uses messages

between client and server to enable the client comunicate with the server. That's why

WSHumanTaskHandler have a MinaTaskClient that create different messages to give the user

different actions that are executed for the server.

In the client (MinaTaskClient in this implementation) we should see the implementation of the

following methods for interacting with Human Tasks:

public void start(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void stop(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void release(long taskId, String userId, TaskOperationResponseHandler

 responseHandler)

public void suspend(long taskId, String userId, TaskOperationResponseHandler

 responseHandler)

public void resume(long taskId, String userId, TaskOperationResponseHandler

 responseHandler)

public void skip(long taskId, String userId, TaskOperationResponseHandler responseHandler)

public void delegate(long taskId, String userId, String targetUserId,

 TaskOperationResponseHandler responseHandler)

public void complete(long taskId, String userId, ContentData outputData,

 TaskOperationResponseHandler responseHandler)

http://mina.apache.org/
http://mina.apache.org/
http://mina.apache.org/

Chapter 10. Human Tasks

88

...

Using this methods we will implement any kind of GUI that the end user will use to do the task

that they have assigned. If you take a look a this method signatures you will notice that almost all

of this method takes the following arguments:

• taskId: the id of the task with we are working. Probably you will pick this Id from the user task

list in the UI (User Interface).

• userId: the id of the user that is executing the action. Probably the Id of the user that is signed

in the application.

• responseHandler: this is the handler have responsibility to catch the response and get the

results or just let us know that the task is already finished.

As you can imagine all the methods create a message that will be send to the server, and the

server will execute the logic that implement the correct action. A creation of one of this messages

will be like this:

public void complete(long taskId,

 String userId,

 ContentData outputData,

 TaskOperationResponseHandler responseHandler) {

 List<Object> args = new ArrayList<Object>(5);

 args.add(Operation.Complete);

 args.add(taskId);

 args.add(userId);

 args.add(null);

 args.add(outputData);

 Command cmd = new Command(counter.getAndIncrement(),

 CommandName.OperationRequest,

 args);

 handler.addResponseHandler(cmd.getId(),

 responseHandler);

 session.write(cmd);

}

Here we can see that a Command is created and the arguments of the method are inserted inside

the command with the type of operation that we are trying to execute and then this command is

sended to the server with session.write(cmd) method.

If we see the server implementation, when the command is recived, we find that depends of the

operation type (here Operation.Complete) will be the logic that will be executed. If we look at the

Starting the Task Management Component

89

class TaskServerHandler in the messageReceived method the taskOperation is executed using

the taskServiceSession that is the responsible for get, persist and manipulate all the Human Task

Information when the tasks are created and the user is not interacting with them.

10.2.3. Starting the Task Management Component

The task management component is a completely independent service that the process engine

communicates with. We therefore recommend to start it as a separate service as well. To start

the task server, you can use the following code fragment:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.drools.task");

taskService = new TaskService(emf);

MinaTaskServer server = new MinaTaskServer(taskService);

Thread thread = new Thread(server);

thread.start();

The task management component uses the Java Persistence API (JPA) to store all task

information in a persistent manner. To configure the persistence, you need to modify the

persistence.xml configuration file accordingly. We refer to the JPA documentation on how to do

that. The following fragment shows for example how to use the task management component with

hibernate and an in-memory H2 database:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="1.0"

 xsi:schemaLocation=

 "http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.drools.task">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <class>org.drools.task.Attachment</class>

 <class>org.drools.task.Content</class>

 <class>org.drools.task.BooleanExpression</class>

 <class>org.drools.task.Comment</class>

 <class>org.drools.task.Deadline</class>

 <class>org.drools.task.Comment</class>

Chapter 10. Human Tasks

90

 <class>org.drools.task.Deadline</class>

 <class>org.drools.task.Delegation</class>

 <class>org.drools.task.Escalation</class>

 <class>org.drools.task.Group</class>

 <class>org.drools.task.I18NText</class>

 <class>org.drools.task.Notification</class>

 <class>org.drools.task.EmailNotification</class>

 <class>org.drools.task.EmailNotificationHeader</class>

 <class>org.drools.task.PeopleAssignments</class>

 <class>org.drools.task.Reassignment</class>

 <class>org.drools.task.Status</class>

 <class>org.drools.task.Task</class>

 <class>org.drools.task.TaskData</class>

 <class>org.drools.task.SubTasksStrategy</class>

 <class>org.drools.task.OnParentAbortAllSubTasksEndStrategy</class>

 <class>org.drools.task.OnAllSubTasksEndParentEndStrategy</class>

 <class>org.drools.task.User</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.connection.driver_class" value="org.h2.Driver"/>

 <property name="hibernate.connection.url" value="jdbc:h2:mem:mydb" />

 <property name="hibernate.connection.username" value="sa"/>

 <property name="hibernate.connection.password" value="sasa"/>

 <property name="hibernate.connection.autocommit" value="false" />

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="create" />

 <property name="hibernate.show_sql" value="true" />

 </properties>

 </persistence-unit>

</persistence>

The first time you start the task management component, you need to make sure that all the

necessary users and groups are added to the database. Our implementation requires all users and

groups to be predefined before trying to assign a task to that user or group. So you need to make

sure you add the necessary users and group to the database using the taskSession.addUser(user)

and taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user

as all tasks are automatically assigned to this user as the administrator role.

The drools-process-task module contains a org.drools.task.RunTaskService class in the src/test/

java source folder that can be used to start a task server. It automatically adds users and groups

as defined in LoadUsers.mvel and LoadGroups.mvel configuration files.

Interacting With the Task Management Component

91

10.2.4. Interacting With the Task Management Component

The task management component exposes various methods to manage the life cycle of the tasks

through a Java API. This allows clients to integrate (at a low level) with the task management

component. Note that end users should probably not interact with this low-level API directly but

rather use one of the task list clients. These clients interact with the task management component

using this API.

This interaction will be described with the following image:

As we can see in the image we have MinaTaskClient and MinaTaskServer. They communicate to

each other sending messages to query and manipulate human tasks. Step by step the interactio

n will be something like this:

• Some client need to complete some task. So he/she needs to create an instace of

MinaTaskClient and connect it to the MinaTaskServer to have a session to talk to each other.

This is the step one in the image.

Chapter 10. Human Tasks

92

• Then the client can call the method complete() in MinaTaskClient with the corresponding

arguments. This will generate a new Message (or Command) that will be inserted in the session

that the client open when it connects to the server. This message must specify a type that the

server recognize and know what to do when the message is recieved. This is the step two in

the image.

• At this moment TaskServerHandler noticed that there is a new message in the session

so an analysis about what kind of message is will take place. In this case is the type of

Operation.Complete, because the client is finishing succesfully some task. So we need to

complete the task that the user want to finish. This is achieved using the TaskServiceSession

that will fire an specific type of event that will be procesed by an specific subclass of

TaskEventListener. This are step three and four in the image.

• When the event is recived by TaskEventListener it will know how to modify the status of the

task. This is achieved using the EntityManager to retrieve and modify the status of an specific

task from the database. In this case, because we are finishing a task, the status will be updated

to Completed. This is step five in the image.

• Now, when the changes are made we need to notify the client about that the task was succesfully

ended and this is achieved creating a response message that TaskClientHandler will receive

and inform MinaTaskClient. This are steps six, seven and eight in the image.

10.3. Human Task Management Interface

10.3.1. Eclipse integration

The Drools IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug

processes using human tasks. In contains a Human Task View that can connect to a running task

management component, request the relevant tasks for a particular user (i.e. the tasks where the

user is either a potential owner or the tasks that the user already claimed and is executing). The

life cycle of these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping

the execution of a task, completing a task, etc. A screenshot of this Human Task View is shown

below. You can configure which task management component to connect to in the Drools Task

preference page (select Window -> Preferences and select Drools Task). Here you can specify

the url and port (default = 127.0.0.1:9123).

Web-based Task View

93

10.3.2. Web-based Task View

We are targeting to add a web-based view that end users can use for managing their tasks for

Drools 5.1.

94

Chapter 11.

95

Chapter 11. Debugging processes
This section describes how to debug processes. This means that the current state of your running

processes can be inspected and visualized during the execution. Note that we currently don't allow

you to put breakpoints on the nodes within a RuleFlow directly. You can however put breakpoints

inside rules (that could be evaluated in the context of a process if you use a ruleset node), or on

any Java code you might have (i.e. your application code that is invoking the engine or invoked

by the engine, listeners, etc.). At these breakpoints, you can then inspect the internal state of your

processes.

A screencast that shows processing debugging in action can be found here [http://

downloads.jboss.com/drools/videos/OrderExample.swf]

We use a simple example throughout this section to illustrate the debugging capabilities. The

example will be introduced first, followed by an illustration on how to use the debugging

capabilities.

11.1. A simple example

Our example contains two processes and some rules (used inside the ruleflow groups):

1. The main process contains some of the most common nodes: a start and end node (obviously),

two ruleflow groups, an action (that simply prints a string to the default output), a milestone

(a wait state that is trigger when a specific Event is inserted in the working memory) and a

subprocess.

2. The SubProcess simply contains a milestone that also waits for (another) specific Event in the

working memory.

http://downloads.jboss.com/drools/videos/OrderExample.swf
http://downloads.jboss.com/drools/videos/OrderExample.swf
http://downloads.jboss.com/drools/videos/OrderExample.swf

Chapter 11. Debugging processes

96

3. There are only two rules (one for each ruleflow group) that simply print out either a hello world

or goodbye world to default output.

We will simulate the execution of this process by starting the process, firing all rules (resulting in

the executing of the hello rule), then adding the specific milestone events for both the milestones

(in the main process and in the subprocess) and finally by firing all rules again (resulting in the

executing of the goodbye rule). The console will look something like this:

Hello World

Executing action

Goodbye cruel world

11.2. Debugging the process

We now add four breakpoints during the execution of the process (in the order in which they will

be encountered):

1. At the start of the consequence of the hello rule

2. Before inserting the triggering event for the milestone in the main process

3. Before inserting the triggering event for the milestone in the subprocess

4. At the start of the consequence of the goodbye rule

When debugging the application, one can use the following debug views to track the execution

of the process:

1. The working memory view, showing the contents (data) in the working memory.

2. The agenda view, showing all activations in the agenda.

3. The global data view, showing the globals.

4. The default Java Debug views, showing the current line and the value of the known variables,

and this both for normal Java code as for rules.

5. The process instances view, showing all running processes (and their state).

6. The audit view, showing the audit log.

The Process Instances View

97

11.2.1. The Process Instances View

The process instances view shows the currently running process instances. The example shows

that there is currently one running process (instance), currently executing one node (instance),

i.e. RuleSet node. When double-clicking a process instance, the process instance viewer will

graphically show the progress of the process instance. At each of the breakpoints, this will look like:

1. At the start of the consequence of the hello rule, only the hello ruleflow group is active, waiting

on the execution of the hello rule:

2. Once that rule has been executed, the action, the milestone and the subprocess will be

triggered. The action will be executed immediately, triggering the join (which will simply wait

until all incomming connections have been triggered). The subprocess will wait at the milestone.

So, before inserting the triggering event for the milestone in the main process, there now are

two process instances, looking like this:

Chapter 11. Debugging processes

98

3. When triggering the event for the milestone in the main process, this will also trigger the join

(which will simply wait until all incomming connections have been triggered). So at that point

(before inserting the triggering event for the milestone in the subprocess), the processes will

look like this:

The Audit View

99

4. When triggering the event for the milestone in the subprocess, this process instance will be

completed and this will also trigger the join, which will then continue and trigger the goodbye

ruleflow group, as all its incomming connections have been triggered. Firing all the rules will

trigger the breakpoint in the goodbye rule. At that point, the situation looks like this:

5. After executing the goodbye rule, the main process will also be completed and the execution

will have reached the end.

11.2.2. The Audit View

For those who want to look at the result in the audit view, this will look something like this [Note:

the object insertion events might seem a little out of place, which is caused by the fact that they

are only logged after (and never before) they are inserted, making it difficult to exactly pinpoint

their location.]

Chapter 11. Debugging processes

100

Chapter 12.

101

Chapter 12. Drools Eclipse IDE

Features
The Drools plugin for the Eclipse IDE provides a few additional features that might be interesting

for developers.

12.1. Drools Runtimes

A Drools runtime is a collection of jar files that represent one specific release of the Drools project

jars. To create a runtime, you must point the IDE to the release of your choice. If you want to create

a new runtime based on the latest Drools project jars included in the plugin itself, you can also

easily do that. You are required to specify a default Drools runtime for your Eclipse workspace,

but each individual project can override the default and select the appropriate runtime for that

project specifically.

12.1.1. Defining a Drools Runtime

To define one or more Drools runtimes using the Eclipse preferences view you open up your

Preferences, by selecting the "Preferences" menu item in the menu "Window". A "Preferences"

dialog should show all your settings. On the left side of this dialog, under the Drools category,

select "Installed Drools runtimes". The panel on the right should then show the currently defined

Drools runtimes. If you have not yet defined any runtimes, it should look like the figure below.

Chapter 12. Drools Eclipse ID...

102

To define a new Drools runtime, click on the add button. A dialog such as the one shown below

should pop up, asking for the name of your runtime and the location on your file system where

it can be found.

In general, you have two options:

Defining a Drools Runtime

103

1. If you simply want to use the default jar files as included in the Drools Eclipse plugin, you can

create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."

button. A file browser will show up, asking you to select the folder on your file system where

you want this runtime to be created. The plugin will then automatically copy all required

dependencies to the specified folder. After selecting this folder, the dialog should look like the

figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on

your file system that contains all the necessary Drools libraries and dependencies. Instead of

creating a new Drools runtime as explained above, give your runtime a name and select the

location of this folder containing all the required jars.

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,

as shown below. Click on checkbox in front of the newly created runtime to make it the default

Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project

that have not selected a project-specific runtime.

Chapter 12. Drools Eclipse ID...

104

You can add as many Drools runtimes as you need. For example, the screenshot below shows

a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.

Note that you will need to restart Eclipse if you changed the default runtime and you want to make

sure that all the projects that are using the default runtime update their classpath accordingly.

Selecting a runtime for your Drools project

105

12.1.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an

existing Java project to a Drools project using the action "Convert to Drools Project" that is shown

when you are in the Drools perspective and you right-click an existing Java project), the plugin

will automatically add all the required jars to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for

that project, unless you specify a project-specific one. You can do this in the final step of the New

Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox

and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace

settings ..." link, the workspace preferences showing the currently installed Drools runtimes will

be opened, so you can add new runtimes there.

You can change the runtime of a Drools project at any time by opening the project properties

and selecting the Drools category, as shown below. Mark the "Enable project specific settings"

checkbox and select the appropriate runtime from the drop-down box. If you click the "Configure

workspace settings ..." link, the workspace preferences showing the currently installed Drools

runtimes will be opened, so you can add new runtimes there. If you deselect the "Enable project

specific settings" checkbox, it will use the default runtime as defined in your global preferences.

Chapter 12. Drools Eclipse ID...

106

12.2. Process Skins

The concept of process skins provides a way of control the visualization of the different nodes of

a processd. You may change the visualization of the various node types to the way you prefer by

implementing your own SkinProvider.

BPMN is a popular language used by business users for modeling business processes. BPMN

defines terminology, different types of nodes, how these should be visualized, etc. People who

are familiar with BPMN might find it easier to implement an executable process (possibly based

on a BPMN process diagram) using a similar visualization. We have therefore created a BPMN

skin that maps the Drools Flow concepts to the equivalent BPMN visualization.

As an example, the following figure shows a process using some of the different types of nodes

in the RuleFlow language using the default skin.

Process Skins

107

You may now change the preferred process skin in the Drools Preferences dialog:

After reopening the editor, the same process is displayed using the BPMN skin.

108

Chapter 13.

109

Chapter 13. Business Activity

Monitoring
You need to actively monitor your processes to make sure you can detect any anomalies and

react to unexpected events as soon as possible. Business Activity Monitoring (BAM) is concerned

with real-time monitoring of your processes and the option of intervening directly, possibly even

automatically, based on the analysis of these events.

Drools Flow allows users to define reports based on the events generated by the process engine,

and possibly direct intervention in specific situations using complex event processing rules (Drools

Fusion), as described in the next two sections. Future releases of the Drools platform will include

support for all requirements of Business Activity Monitoring, including a web-based application

that can be used to more easily interact with a running process engine, inspect its state, generate

reports, etc.

13.1. Reporting

By adding a history logger to the process engine, all relevent events are stored in the database.

This history log can be used to monitor and analyze the execution of your processes. We are

using the Eclipse BIRT (Business Intelligence Reporting Tool) to create reports that show the key

performance indicators. Its easy to define your own reports yourself, using the predefined data

sets containing all process history information, and any other data sources you might want to add

yourself.

The Eclipse BIRT framework allows you to define data sets, create reports, include charts, preview

your reports, and export them on web pages. (Consult the Eclipse BIRT documentation on how to

define your own reports.) The following screen shot shows a sample on how to create such a chart.

Chapter 13. Business Activity...

110

Figure 13.1. Creating a report using Eclipse BIRT

The next figure displays a simple report based on some history data, showing the number of

requests per hour and the average completion time of the request during that hour. These charts

could be used to check for an unexpected drop or rise of requests, an increase in the average

processing time, etc. These charts could signal possible problems before the situation really gets

out of hand.

Direct Intervention

111

Figure 13.2. The eventing report

13.2. Direct Intervention

Reports can be used to visualize an overview of the current state of your processes, but they

rely on a human actor to take action based on the information in these charts. However, we allow

users to define automatic responses to specific circumstances.

Drools Fusion provides numerous features that make it easy to process large sets of events. This

can be used to monitor the process engine itself. This can be achieved by adding a listener to

the engine that forwards all related process events, such as the start and completion of a process

instance, or the triggering of a specific node, to a session responsible for processing these events.

This could be the same session as the one executing the processes, or an independent session

as well. Complex Event Processing (CEP) rules could then be used to specify how to process

these events. For example, these rules could generate higher-level business events based on a

specific occurrence of low-level process events. The rules could also specify how to respond to

specific situations.

The next section shows a sample rule that accumulates all start process events for one specific

order process over the last hour, using the "sliding window" support. This rule prints out an error

Chapter 13. Business Activity...

112

message if more than 1000 process instances were started in the last hour (e.g., to detect a

possible overload of the server). Note that, in a realistic setting, this would probably be replaced

by sending an email or other form of notification to the responsible instead of the simple logging.

declare ProcessStartedEvent

 @role(event)

end

dialect "mvel"

rule "Number of process instances above threshold"

when

 Number(nbProcesses : intValue > 1000)

 from accumulate(

 e: ProcessStartedEvent(processInstance.processId == "com.sample.order.OrderProcess")

 over window:size(1h),

 count(e))

then

 System.err.println("WARNING: Number of order processes in the last hour above 1000: " +

 nbProcesses);

end

These rules could even be used to alter the behavior of a process automatically at runtime,

based on the events generated by the engine. For example, whenever a specific situation is

detected, additional rules could be added to the Knowledge Base to modify process behavior. For

instance, whenever a large amount of user requests within a specific time frame are detected, an

additional validation could be added to the process, enforcing some sort of flow control to reduce

the frequency of incoming requests. There is also the possibility of deploying additional logging

rules as the consequence of detecting problems. As soon as the situtation reverts back to normal,

such rules would be removed again.

Chapter 14.

113

Chapter 14. Business Process

Model and Notation (BPMN 2.0)
The Business Process Model and Notation (BPMN) 2.0 specification is steadily moving forward

on its way to become a great standard, and we are adopting it for our process modeling in Drools

Flow. BPMN 2.0 not only defines a standard on how to graphically represent a business process

(like BPMN 1.1), but now also includes execution semantics for the elements defined, and an XML

format on how to store (and share) process definitions.

Drools Flow allows you to execute processes defined using the BPMN 2.0 XML format, just the

same way as it allows you to execute processes using the custom RuleFlow format. That means

that you can use the same API, engine and components like Guvnor and the gwt-console, to

execute and manage your BPMN 2.0 processes.

We do yet implement all node types and attributes as defined in the BPMN 2.0 specification, but

we already support a very significant subset, which includes all common node types. The following

list gives an overview of the various elements that can already be executed using the BPMN 2.0

XML format:

• Flow objects

• Events

• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

• Non-interrupting Boundary Event (Escalation, Timer)

• Interrupting Boundary Event (Escalation, Error, Timer, Compensation)

• Activities

• Script Task (Java or MVEL expression language)

• Task

• Service Task

• User Task

• Business Rule Task

Chapter 14. Business Process ...

114

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Ad-Hoc Sub-Process

• Data-Object

• Gateways

• Diverging

• Exclusive (Java, MVEL or XPath expression language)

• Inclusive (Java, MVEL or XPath expression language)

• Parallel

• Event-Based

• Converging

• Exclusive

• Parallel

• Lanes

• Data

• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

• Connecting objects

• Sequence flow

For example, consider the following BPMN process for performing evaluations. Whenever an

evaluation process is started for a specific employee, that employee must first perform a self-

evaluation, after which the project manager and human resource manager must also fill in their

evaluation, as shown in the figure below.

115

An executable version of this process expressed using BPMN 2.0 XML would look something like

this (note that the process needs to contain all the details to make it execuble, including all the

parameters for each of the tasks present, hence the large process definition):

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.jboss.org/drools"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

 xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"

 xmlns:g="http://www.jboss.org/drools/flow/gpd"

 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.evaluation" name="Evaluation

 Process" >

 <!-- process variables -->

 <property id="employee" itemSubjectRef="_employeeItem"/>

 <!-- nodes -->

 <startEvent id="_1" name="StartProcess" g:x="16" g:y="56" g:width="48" g:height="48" />

 <userTask id="_2" name="Self Evaluation" g:x="96" g:y="56" g:width="143" g:height="48" >

 <ioSpecification>

 <dataInput id="_2_CommentInput" name="Comment" />

 <dataInput id="_2_SkippableInput" name="Skippable" />

 <dataInput id="_2_TaskNameInput" name="TaskName" />

 <dataInput id="_2_ContentInput" name="Content" />

 <dataInput id="_2_PriorityInput" name="Priority" />

 <inputSet>

 <dataInputRefs>_2_CommentInput</dataInputRefs>

 <dataInputRefs>_2_SkippableInput</dataInputRefs>

 <dataInputRefs>_2_TaskNameInput</dataInputRefs>

Chapter 14. Business Process ...

116

 <dataInputRefs>_2_ContentInput</dataInputRefs>

 <dataInputRefs>_2_PriorityInput</dataInputRefs>

 </inputSet>

 <outputSet>

 </outputSet>

 </ioSpecification>

 <dataInputAssociation>

 <targetRef>_2_CommentInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">You need to perform a self-evaluation</from>

 <to xs:type="tFormalExpression">_2_CommentInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_2_SkippableInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">false</from>

 <to xs:type="tFormalExpression">_2_SkippableInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_2_TaskNameInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">Performance Evaluation</from>

 <to xs:type="tFormalExpression">_2_TaskNameInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_2_ContentInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression"></from>

 <to xs:type="tFormalExpression">_2_ContentInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_2_PriorityInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">1</from>

 <to xs:type="tFormalExpression">_2_PriorityInput</to>

 </assignment>

 </dataInputAssociation>

 <potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression>#{employee}</formalExpression>

117

 </resourceAssignmentExpression>

 </potentialOwner>

 </userTask>

 <parallelGateway id="_3" name="Diverge" g:x="271" g:y="56" g:width="49" g:height="49" gatewayDirection="Diverging" /

>

 <userTask id="_4" name="HR Manager

 Evaluation" g:x="352" g:y="96" g:width="225" g:height="48" >

 <ioSpecification>

 <dataInput id="_4_CommentInput" name="Comment" />

 <dataInput id="_4_SkippableInput" name="Skippable" />

 <dataInput id="_4_TaskNameInput" name="TaskName" />

 <dataInput id="_4_ContentInput" name="Content" />

 <dataInput id="_4_PriorityInput" name="Priority" />

 <inputSet>

 <dataInputRefs>_4_CommentInput</dataInputRefs>

 <dataInputRefs>_4_SkippableInput</dataInputRefs>

 <dataInputRefs>_4_TaskNameInput</dataInputRefs>

 <dataInputRefs>_4_ContentInput</dataInputRefs>

 <dataInputRefs>_4_PriorityInput</dataInputRefs>

 </inputSet>

 <outputSet>

 </outputSet>

 </ioSpecification>

 <dataInputAssociation>

 <targetRef>_4_CommentInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">You need to perform an evaluation for #{employee}</

from>

 <to xs:type="tFormalExpression">_4_CommentInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_4_SkippableInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">false</from>

 <to xs:type="tFormalExpression">_4_SkippableInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_4_TaskNameInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">Performance Evaluation</from>

 <to xs:type="tFormalExpression">_4_TaskNameInput</to>

Chapter 14. Business Process ...

118

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_4_ContentInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression"></from>

 <to xs:type="tFormalExpression">_4_ContentInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_4_PriorityInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">1</from>

 <to xs:type="tFormalExpression">_4_PriorityInput</to>

 </assignment>

 </dataInputAssociation>

 <potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression>mary</formalExpression>

 </resourceAssignmentExpression>

 </potentialOwner>

 </userTask>

 <userTask id="_5" name="Project Manager

 Evaluation" g:x="352" g:y="16" g:width="225" g:height="48" >

 <ioSpecification>

 <dataInput id="_5_CommentInput" name="Comment" />

 <dataInput id="_5_SkippableInput" name="Skippable" />

 <dataInput id="_5_TaskNameInput" name="TaskName" />

 <dataInput id="_5_ContentInput" name="Content" />

 <dataInput id="_5_PriorityInput" name="Priority" />

 <inputSet>

 <dataInputRefs>_5_CommentInput</dataInputRefs>

 <dataInputRefs>_5_SkippableInput</dataInputRefs>

 <dataInputRefs>_5_TaskNameInput</dataInputRefs>

 <dataInputRefs>_5_ContentInput</dataInputRefs>

 <dataInputRefs>_5_PriorityInput</dataInputRefs>

 </inputSet>

 <outputSet>

 </outputSet>

 </ioSpecification>

 <dataInputAssociation>

 <targetRef>_5_CommentInput</targetRef>

 <assignment>

119

 <from xs:type="tFormalExpression">You need to perform an evaluation for #{employee}</

from>

 <to xs:type="tFormalExpression">_5_CommentInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_5_SkippableInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">false</from>

 <to xs:type="tFormalExpression">_5_SkippableInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_5_TaskNameInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">Performance Evaluation</from>

 <to xs:type="tFormalExpression">_5_TaskNameInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_5_ContentInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression"></from>

 <to xs:type="tFormalExpression">_5_ContentInput</to>

 </assignment>

 </dataInputAssociation>

 <dataInputAssociation>

 <targetRef>_5_PriorityInput</targetRef>

 <assignment>

 <from xs:type="tFormalExpression">1</from>

 <to xs:type="tFormalExpression">_5_PriorityInput</to>

 </assignment>

 </dataInputAssociation>

 <potentialOwner>

 <resourceAssignmentExpression>

 <formalExpression>john</formalExpression>

 </resourceAssignmentExpression>

 </potentialOwner>

 </userTask>

 <parallelGateway id="_6" name="Converge" g:x="603" g:y="55" g:width="49" g:height="49" gatewayDirection="Converging" /

>

 <endEvent id="_7" name="EndProcess" g:x="690" g:y="56" g:width="48" g:height="48" >

 <terminateEventDefinition/>

Chapter 14. Business Process ...

120

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 <sequenceFlow id="_3-_4" sourceRef="_3" targetRef="_4" g:bendpoints="[295,120]" />

 <sequenceFlow id="_3-_5" sourceRef="_3" targetRef="_5" g:bendpoints="[295,39]" />

 <sequenceFlow id="_5-_6" sourceRef="_5" targetRef="_6" g:bendpoints="[627,40]" />

 <sequenceFlow id="_4-_6" sourceRef="_4" targetRef="_6" g:bendpoints="[627,121]" />

 <sequenceFlow id="_6-_7" sourceRef="_6" targetRef="_7" />

 </process>

</definitions>

To create your own process using BPMN 2.0 format, you can

• Create a new Flow file using the Drools Eclipse plugin wizard and in the last page of the wizard,

make sure you select Drools 5.1 code compatibility. This will create a new process using the

BPMN XML format instead of the old RuleFlow format. Note however that this is not a real

BPMN 2.0 editor, as it still uses different attributes. It does however save the process using valid

BPMN 2.0 syntax. Also note that the editor does not yet support all node types and attributes

that are already supported in the execution engine.

• Oryx is an open-source web-based editor that supports the BPMN 2.0 format. We have

embedded it into Guvnor for BPMN 2.0 process visualization and editing. You could use the Oryx

editor (either standalone or integrated) to create / edit BPMN 2.0 processes and then export

them to BPMN 2.0 format so they can be executed. Be aware however that Oryx is still using

the BPMN 2.0 beta 1 format and that their implementation is currently incomplete (especially

the import / export functionality).

• You can always manually create your BPMN 2.0 process files by writing the XML directly.

The following code fragment shows you how to load a BPMN process into your knowledge base ...

private static KnowledgeBase readKnowledgeBase() throws Exception {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource("sample.bpmn"),

 ResourceType.BPMN2);

 return kbuilder.newKnowledgeBase();

}

... and how to execute this process.

Current limitations

121

KnowledgeBase kbase = readKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory.newFileLogger(ksession,

 "test");

ksession.getWorkItemManager().registerWorkItemHandler("Human Task", new

 WSHumanTaskHandler());

// start a new process instance

Map<String, Object> params = new HashMap<String, Object>();

params.put("employee", "krisv");

ksession.startProcess("com.sample.evaluation", params);

14.1. Current limitations

Since the BPMN 2.0 specification is still being finalized, the BPMN 2.0 execution is still an

experimental feature. It uses the same execution engine and constructs as the RuleFlow format

however (it's just another XML serialization format). Therefore, all features and components that

are available using the RuleFlow format also work for BPMN 2.0 processes. You simply have to

use the right ResourceType when adding BPMN 2.0 processes to your knowledge base. Since

the specification hasn't been finalized yet, it is possible that the XSD that defines the format might

still change (slightly) due to updates of the specification, so keep this in mind if you decide to start

using the BPMN 2.0 format.

The use of a specification should give you a lot of advantages, as it allows you to share your

processes across tools and possibly even engines as the specification defines the exact format

(and even execution semantics) for each of the elements. At this point however, it is likely that

different tools are using different intermediate versions of the specification. We believe that this

issue will automatically resolve itself over time once the specification is finalized and everyone is

using the same version of the specification, but until then, you can encounter compatibility issues

related to this problem. Please be a little patient with this.

Finally, the BPMN 2.0 specification defines a lot of node types and attributes, but nevertheless it is

not possible to express everything using the constructs offered by the BPMN 2.0 specification only.

However, the specification is designed to allow additional node types, attributes, etc. While we try

to limit the use of custom extensions to a minimum, we sometimes have to define custom attributes

to express features that we believe are important but cannot be expressed as core BPMN 2.0

syntax. The following table gives an overview of which features of the RuleFlow language have

already been ported to the BPMN 2.0 XML format. A green check mark means that the functionality

can be expressed using the features defined in the BPMN 2.0 specification. In those cases where

we extend the BPMN 2.0 specification with additional attributes and/or elements, we show these

using an orange check mark. As shown in the table below, most of the basic BPMN 2.0 nodes

are already supported. We decided to not yet implement some of the features that cannot be

expressed in BPMN 2.0 by default, like for example the on-entry / on-exit actions or the state

Chapter 14. Business Process ...

122

node. We will decide later whether we want to support these features for BPMN 2.0 processes

in the future, and how.

Table 14.1. Keywords

Feature Drools BPMN Drools Flow

A. Process-level

Imports

Function Imports

Variable

- primitive Java types

- Java object types

- default value

Swimlanes

Exception handlers

- fault name

- bind to variable

- action

B. Nodes

1. Start Node

- rule trigger

- signal trigger

- parameter mapping

2. End Node

- terminate

Current limitations

123

Feature Drools BPMN Drools Flow

3. Action Node

- Java dialect

* access to variables, global,

context

- MVEL dialect

* access to variables, global,

context

4. RuleSet Node

- timers

5. Split Node

- AND

- XOR

- OR

- Java code constraints

- MVEL code constraints

- rule constraints

- constraint names

- constraint priorities

6. Join Node

AND

XOR

Discriminator

Chapter 14. Business Process ...

124

Feature Drools BPMN Drools Flow

n-of-m

7. State Node

- timers

- on entry actions

- on exit actions

- automatic transition

constraints

- manual transition signal

8. SubProcess Node

- timers

- on entry actions

- on exit actions

- wait for completion

- independant

- parameter mapping (in/out)

- dynamic process id

9. WorkItem Node

- parameters

- parameter mapping (in/out)

- timers

- on entry actions

- on exit actions

Current limitations

125

Feature Drools BPMN Drools Flow

- wait for completion

10. Timer Node

- delay

- period

11. Human Task Node (also

see WorkItem Node)

- swimlane

12. Composite Node

- timers

- on entry actions

- on exit actions

- variables

- exception handlers

- multiple entry points

- multiple exit points

13. ForEach Node

- bind to variable

- wait for completion

- multiple entry points

- multiple exit points

Chapter 14. Business Process ...

126

Feature Drools BPMN Drools Flow

14. Event Node

- bind to variable

- internal / external

- event filters

15. Fault Node

- fault name

- fault data

Graphical information (x, y,

width, height)

C. Connections

From, To

From type

To type

Graphical information

(bendpoints)

Chapter 15.

127

Chapter 15. Console
Drools processes can be managed through a web console. This includes features like managing

your process instances (starting/stopping/inspecting), inspecting your (human) task list and

executing those tasks, and generating reports.

The Drools build system generates two wars for you that can be deployed in your application

server and contains the necessary libraries, the actual application, etc. One jar contains the server

application, the other one the client. Download gwt-console-server-drools-{version}.war and gwt-

console-drools-{version}.war and deploy them to your application server, {AS_HOME}/server/

{configuration}/deploy (so for example, we are using jboss-4.2.3.GA/server/default/deploy).

15.1. Installation

The easiest way to get started with the console is probably to use the installer. This will download,

install and configure all the necessary components to get the console running, including Guvnor,

a human task service, etc. Check out the chapter on the installer for more information. If you want

to manually install the console, you can continue reading here.

You need to have an application server installed. This chapter assumes you are using the JBoss

AS version 4.2.3.GA, but other versions or other application servers should be possible as well.

15.1.1. Installing Guvnor

The process management console uses Drools Guvnor for loading the process definitions that can

be used inside the console. You therefore need to install Guvnor, to be able to add new process

definitions to the repository, so they can then be managed through the console. To do so, simply

copy drools-guvnor.war to your application server, {AS_HOME}/server/{configuration}/deploy.

15.1.2. Changing the persistence configuration of your runtime

data

The persistence.xml that is included in the server war refers to a JTA data source called "java:jdbc/

testDS1" for storing the runtime information. To define this data source, create a testDS1-ds.xml

file with the following content (note that we are using an embedded H2 in memory database, but

similar configurations for another JPA data source is possible as well of course), and copy it to

your application server deploy directory:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>jdbc/testDS1</jndi-name>

 <connection-url>jdbc:h2:mem:mydb</connection-url>

 <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>

 <user-name>sa</user-name>

Chapter 15. Console

128

 <password></password>

 </local-tx-datasource>

</datasources>

Also make sure that the driver class can be found on the server classpath. In this case, we copied

the h2-1.0.77.jar to the {AS_HOME}/server/{config}/lib folder.

15.1.3. Changing the persistence configuration of your history

data

Drools uses Hibernate to persist history information in a database, for long term storagy. The

drools-bam module (inside the gwt-console-server-drools war) contains a hibernate.cfg.xml file

that contains the default configuration, i.e using an embedded H2 in memory database. However,

this embedded database does not allow concurrent access. If you are planning to use reporting,

concurrent access might be required, so you should use the server configuration of the H2 in

memory database in that case. Change the connection url in the hibernate.cfg.xml to this:

<property name="connection.url">jdbc:h2:tcp://localhost/~/test</property>

In this case, you should also make sure you have the H2 database running in server mode when

running the application - for example by executing the org.h2.tools.Server class.

15.1.4. Installing the reporting engine

The reporting engine is based on the Eclipse BIRT engine. You need to install the Eclipse BIRT

runtime engine in your application server to be able to use the reporting functionality. To do so,

create a new directory called {AS_HOME}/server/{configuration}/data/birt. Download the Eclipse

BIRT report engine version 2.3.2 (birt-runtime-2_3_2_2.zip), extract it and copy the ReportEngine

directory to the newly created directory (the other directories are not needed).

Next, you need to copy your process instance reports to the newly created directory as well.

Eclipse BIRT allows you to define your own reports based on existing data sources. The console

expects two different reports:

1. overall_activity.rptdesign: this reports shows an overview of all running process instances in

your system

2. process_summary.rptdesign: this reports is shown when the user wants to look into one process

definition. It gives more details about all instances for that process.

We have created some example reports you could use and customize according to

your own requirements. The example report templates can be found in the drools-bam

module (src/test/resources). Note that these example reports are also using the H2 in

memory database (in server mode). If you configured the persistence of the history data

differently, you will have to update the data source of these reports accordingly. You

User authentication

129

also need to copy your database drivers to the reporting plugin. In our case, using

H2, copy the h2-1.0.77.jar to {AS_HOME}/server/{configuration}/data/birt/ReportEngine/plugins/

org.eclipse.birt.report.data.oda.jdbc_2.3.2.r232_v20090212/drivers.

15.1.5. User authentication

The application uses simple password authentication to verify who is allowed to use the

application. For example, usernames / passwords can be specified in a users.properties file in

{AS_HOME}/server/{configuration}/conf, for example:

admin=admin

krisv=mypassword

The roles associated with these users can be specified in a roles.properties file in the same

directory, for example:

admin=admin,manager,user

krisv=admin,manager,user

15.1.6. Configure memory settings

You might want to increase the memory that can be used by the application server (especially the

PermGen space) if you run into OutOfMemory exceptions. To do so, edit the run.conf or run.bat

(depending on your OS) and for example add the following line:

JAVA_OPTS="$JAVA_OPTS -XX:MaxPermSize=256m"

You are now ready to startup the application server. If you are using human tasks in your

processes, you should also make sure you have the task service running (on 127.0.0.1:9123).

Also make sure your database is up and running of course.

15.2. Adding process definitions in Guvnor

Drools Guvnor allows you to manage all your business knowledge in a (logically) centralized

location. This includes all your process definitions, business rules, etc. The process management

console automatically retrieves all the processes from the latest snapshot of the "defaultPackage"

package on Guvnor. To find out how to get processes on the Guvnor repository (for example

manually uploading them, or using the Eclipse Guvnor synchronization), check out the Guvnor

Chapter 15. Console

130

documentation. After deploying Guvnor to your application server, navigate to the following URL

to open up Guvnor (replace the host and/or port depending on how the application server is

configured): http://localhost:8080/drools-guvnor

The following screenshot shows an example where the "defaultPackage" package contains one

"Evaluation" process. After adding the necessary process definitions, make sure to build the

package, so that the built package can be downloaded by the web console.

It is important that you make sure that (1) you add your processes to the package with the name

"defaultPackage", otherwise your processes won't show up in the console, and (2) that your

http://localhost:8080/drools-guvnor

Running the process management console

131

processes also define "defaultPackage" as the package of the process. Guvnor does not allow a

process to be built if it is not put in the same package as it defines.

15.3. Running the process management console

Now navigate to the following URL (replace the host and/or port depending on how the application

server is configured): http://localhost:8080/gwt-console

A login screen should pop up, asking for your user name and password.

After filling these in, the process management workbench should be opened, as shown in the

screenshot below. On the right you will see several tabs, related to process instance management,

human task lists and reporting, as explained in the following sections.

http://localhost:8080/gwt-console

Chapter 15. Console

132

15.3.1. Managing process instances

The "Processes" section allows you to inspect the process definitions that are currently part of the

installed knowledge base, start new process instances and manage running process instances

(which includes inspecting their state and data).

Managing process instances

133

15.3.1.1. Inspecting process definitions

When you open the process definition list, all processes that are stored in the "default" package

on Guvnor are shown. You can then either inspect process instances for one specific process or

start a new process instance.

15.3.1.2. Starting new process instances

To start a new process instance for one specific process definition, select the process definition in

the process definition list and select the process instances tab. Click on the "Start" button to start

a new instance of that specific process. When a form is associated with this particular process (to

Chapter 15. Console

134

ask for additional information before starting the process), this form will be shown. After completing

this form, the process will be started with the provided information.

15.3.1.3. Managing process instances

The process instances tab also contains a table showing all running instances of that specific

process definition. Select a process instance to show the details of that specific process instance.

Managing process instances

135

15.3.1.4. Inspecting process instance state

You can inspect the (top-level) variables of a specific process instance by clicking on the

"Instance Data" button. This will show you how each variable defined in the process maps to it's

corresponding value for that specific process instance.

Chapter 15. Console

136

Human task lists

137

15.3.1.5. Inspecting process instance variables

You can inspect the state of a specific process instance by clicking on the "Diagram" button. This

will show you the process flow chart, where a red traingle is shown at each node that is currently

active (like for example a human task node waiting for the task to be completed or a join node

waiting for more incoming connections before continuing). [Note that multiple instances of one

node could be executing simultaneously. They will still be shown using only one red triangle.]

15.3.2. Human task lists

The task management section allows a user to see his/her current task list. The group task list

shows all the tasks that are not yet assigned to one specific user but that the currently logged in

user could claim. The personal task list shows all tasks that are assigned to the currently logged in

Chapter 15. Console

138

user. To execute a task, select it in your personal task list and select "View". If a form is associated

with the selected task (for example to ask for additional information), this form will be shown. After

completing the form, the task will also be completed.

Reporting

139

15.3.3. Reporting

The reporting section allows you to view reports about the execution of processes. This includes

an overall report showing an overview of all processes, as shown below.

Chapter 15. Console

140

Reporting

141

A report regarding one specific process instance can also be generated.

Chapter 15. Console

142

Adding new process / task forms

143

Drools Flow provides some sample reports that could be used to visualize some generic execution

characteristics like the number of active process instances per process etc. But custom reports

could be generated to show the information your company thinks is important, by replacing the

report templates in the report directory.

15.4. Adding new process / task forms

Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker

templates to dynamically create forms. To create a form for a specific process definition, create

a freemarker template with the name {processId}.ftl. The template itself should use HTML code

to model the form. For example, the form to start the evaluation process shown above is defined

in the com.sample.evaluation.ftl file:

<html>

<body>

<h2>Start Performance Evaluation</h2>

<hr>

<form action="complete" method="POST" enctype="multipart/form-data">

Please fill in your username: <input type="text" name="employee" /></BR>

<input type="submit" value="Complete">

</form>

</body>

</html>

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can

be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The

form has access to a "task" parameter that represents the current human task, so it allows you

to dynamically adjust the task form based on the task input. The task parameter is a Task model

object as defined in the drools-process-task module. This for example allows you to customize the

task form based on the description or input data related to that task. For example, the evaluation

form shown earlier uses the task parameter to access the description of the task and show that

in the task form:

<html>

<body>

<h2>Employee evaluation</h2>

<hr>

${task.descriptions[0].text}

Please fill in the following evaluation form:

<form action="complete" method="POST" enctype="multipart/form-data">

Chapter 15. Console

144

Rate the overall performance: <select name="performance">

<option value="outstanding">Outstanding</option>

<option value="exceeding">Exceeding expectations</option>

<option value="acceptable">Acceptable</option>

<option value="below">Below average</option>

</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative">Displaying initiative

<input type="checkbox" name="change" value="change">Thriving on change

<input type="checkbox" name="communication" value="communication">Good communication

 skills

<input type="submit" value="Complete">

</form>

</body>

</html>

Data that is provided by the user when filling in the task form will be added as parameters

when completing the task. For example, when completing the task above, the Map of

outcome parameters will include result variables called "performance", "initiative", "change" and

"communication". The result parameters can be accessed in the related process by mapping these

parameters to process variables.

Forms should be included in the drools-gwt-form.jar in the server war.

145

Index

146

	Drools Flow User Guide
	Table of Contents
	
	Chapter 1. Introduction
	Chapter 2. Installer
	2.1. Prerequisites
	2.2. Download the installer
	2.3. Download the installer
	2.4. Using Eclipse Tooling
	2.5. Using Guvnor repository
	2.6. Using web management consoles

	Chapter 3. Getting Started
	3.1. Installation
	3.2. Creating Your First Process
	3.3. Executing your first process

	Chapter 4. Rule Flow
	4.1. Creating a RuleFlow Process
	4.1.1. Using the Graphical RuleFlow Editor
	4.1.2. Defining Processes Using XML
	4.1.3. Defining Processes Using the Process API
	4.1.3.1. Example 1
	4.1.3.2. Example 2
	4.1.3.3. Example 3

	4.2. Using a Process in Your Application
	4.3. Detailed Explanation of the Different Node Types
	4.4. Data
	4.5. Constraints
	4.6. Actions
	4.7. Events
	4.8. Exceptions
	4.9. Timers
	4.10. Updating processes
	4.10.1. Process instance migration

	4.11. Assigning Rules to a Ruleflow Group
	4.12. A Simple Ruleflow
	4.13. Using Drools 4.x RuleFlow Processes

	Chapter 5. Drools Flow API
	5.1. Knowledge Base
	5.2. Session
	5.3. Events

	Chapter 6. Persistence
	6.1. Runtime State
	6.1.1. Binary Persistence
	6.1.2. Safe Points
	6.1.3. Configuring Persistence
	6.1.4. Transactions

	6.2. Process Definitions
	6.3. History Log
	6.3.1. Storing Process Events in a Database

	Chapter 7. Drools Flow Process Model
	Chapter 8. Rules and Processes
	8.1. Why Use Rules in Processes?
	8.2. Why Integrate Rules and Processes in a Single Engine?
	8.3. Approach
	8.3.1. Teaching a Rules Engine About Processes
	8.3.2. Inversion of Control

	8.4. Example
	8.4.1. Evaluating a Set of Rules in Your Process
	8.4.2. Using Rules for Evaluating Constraints
	8.4.3. Assignment Rules
	8.4.4. Describing Exceptional Situations Using Rules
	8.4.5. Modularizing Concerns Using Rules
	8.4.6. Rules for Altering Process Behavior Dynamically
	8.4.7. Integrated Tooling
	8.4.8. Domain-specific Rules and Processes

	Chapter 9. Domain-specific processes
	9.1. Introduction
	9.2. Example: Notifications
	9.2.1. Creating the work definition
	9.2.2. Registering the work definition
	9.2.3. Using your new work item in your processes
	9.2.4. Executing work items

	9.3. Testing processes using work items
	9.4. Future

	Chapter 10. Human Tasks
	10.1. Human tasks inside processes
	10.1.1. Swimlanes

	10.2. Human task management component
	10.2.1. Task life cycle
	10.2.2. Linking the task component to the Drools Flow engine
	10.2.3. Starting the Task Management Component
	10.2.4. Interacting With the Task Management Component

	10.3. Human Task Management Interface
	10.3.1. Eclipse integration
	10.3.2. Web-based Task View

	Chapter 11. Debugging processes
	11.1. A simple example
	11.2. Debugging the process
	11.2.1. The Process Instances View
	11.2.2. The Audit View

	Chapter 12. Drools Eclipse IDE Features
	12.1. Drools Runtimes
	12.1.1. Defining a Drools Runtime
	12.1.2. Selecting a runtime for your Drools project

	12.2. Process Skins

	Chapter 13. Business Activity Monitoring
	13.1. Reporting
	13.2. Direct Intervention

	Chapter 14. Business Process Model and Notation (BPMN 2.0)
	14.1. Current limitations

	Chapter 15. Console
	15.1. Installation
	15.1.1. Installing Guvnor
	15.1.2. Changing the persistence configuration of your runtime data
	15.1.3. Changing the persistence configuration of your history data
	15.1.4. Installing the reporting engine
	15.1.5. User authentication
	15.1.6. Configure memory settings

	15.2. Adding process definitions in Guvnor
	15.3. Running the process management console
	15.3.1. Managing process instances
	15.3.1.1. Inspecting process definitions
	15.3.1.2. Starting new process instances
	15.3.1.3. Managing process instances
	15.3.1.4. Inspecting process instance state
	15.3.1.5. Inspecting process instance variables

	15.3.2. Human task lists
	15.3.3. Reporting

	15.4. Adding new process / task forms

	Index

