
Drools Expert User Guide

iii

... vii

1. The Rule Engine .. 1

1.1. What is a Rule Engine? .. 1

1.1.1. Introduction and Background .. 1

1.2. Why use a Rule Engine? .. 6

1.2.1. Advantages of a Rule Engine ... 6

1.2.2. When should you use a Rule Engine? ... 7

1.2.3. When not to use a Rule Engine .. 8

1.2.4. Scripting or Process Engines .. 8

1.2.5. Strong and Loose Coupling .. 9

2. Quick Start ... 11

2.1. The Basics ... 11

2.1.1. Stateless Knowledge Session ... 11

2.1.2. Stateful Knowledge Session .. 14

2.2. A Little Theory .. 19

2.2.1. Methods versus Rules .. 19

2.2.2. Cross Products .. 20

2.2.3. Activations, Agenda and Conflict Sets. .. 21

2.2.4. Inference ... 26

2.2.5. Inference and TruthMaintenance ... 29

2.3. More on building and deploying ... 31

2.3.1. Knowledge Base by Configuration Using Changesets 31

2.3.2. Knowledge Agent ... 32

3. User Guide ... 35

3.1. Building .. 35

3.1.1. Building using Code ... 36

3.1.2. Building using Configuration and the ChangeSet XML 39

3.2. Deploying ... 42

3.2.1. KnowledgePackage and Knowledge Definitions .. 42

3.2.2. KnowledgeBase ... 43

3.2.3. In-Process Building and Deployment ... 45

3.2.4. Building and Deployment in Separate Processes 46

3.2.5. StatefulknowledgeSessions and KnowledgeBase Modifications 47

3.2.6. KnowledgeAgent .. 47

3.3. Running .. 51

3.3.1. KnowledgeBase ... 51

3.3.2. StatefulKnowledgeSession .. 52

3.3.3. KnowledgeRuntime ... 52

3.3.4. Agenda .. 61

3.3.5. Event Model .. 66

3.3.6. KnowledgeRuntimeLogger .. 68

3.3.7. StatelessKnowledgeSession .. 69

3.3.8. Commands and the CommandExecutor ... 73

3.3.9. Marshalling .. 82

Drools Expert User Guide

iv

3.3.10. Persistence and Transactions ... 84

3.3.11. Drools Clips ... 86

4. The Rule Language .. 89

4.1. Overview .. 89

4.1.1. A rule file ... 89

4.1.2. What makes a rule ... 90

4.2. Keywords ... 90

4.3. Comments .. 93

4.3.1. Single line comment ... 93

4.3.2. Multi-line comment ... 93

4.4. Error Messages .. 94

4.4.1. Message format ... 94

4.4.2. Error Messages Description .. 95

4.4.3. Other Messages ... 99

4.5. Package ... 99

4.5.1. import .. 100

4.5.2. global .. 100

4.6. Function ... 102

4.7. Type Declaration ... 103

4.7.1. Declaring New Types ... 104

4.7.2. Declaring Metadata .. 106

4.7.3. Declaring Metadata for Existing Types ... 107

4.7.4. Accessing Declared Types from the Application Code 108

4.8. Rule ... 110

4.8.1. Rule Attributes ... 111

4.8.2. Timers and Calendars .. 114

4.8.3. Left Hand Side (when) Conditional Elements .. 116

4.8.4. The Right Hand Side (then) .. 149

4.8.5. A Note on Auto-boxing and Primitive Types ... 151

4.9. Query ... 152

4.10. Domain Specific Languages ... 153

4.10.1. When to use a DSL .. 153

4.10.2. Editing and managing a DSL ... 154

4.10.3. Using a DSL in your rules ... 156

4.10.4. Adding constraints to facts .. 157

4.10.5. How it works .. 159

4.10.6. Creating a DSL from scratch ... 159

4.10.7. Scope and keywords .. 160

4.10.8. DSLs in the BRMS and IDE .. 160

4.11. XML Rule Language .. 161

4.11.1. When to use XML .. 161

4.11.2. The XML format ... 161

4.11.3. Legacy Drools 2.x XML rule format .. 166

4.11.4. Automatic transforming between formats (XML and DRL) 166

v

5. Authoring ... 169

5.1. Decision Tables in Spreadsheets ... 169

5.1.1. When to use Decision tables ... 169

5.1.2. Overview .. 169

5.1.3. How decision tables work ... 172

5.1.4. Keywords and Syntax ... 174

5.1.5. Creating and integrating Spreadsheet based Decision Tables 181

5.1.6. Managing business rules in decision tables .. 182

5.1.7. Rule Templates .. 183

5.2. Templates ... 186

5.2.1. The Rule Template File .. 186

5.2.2. Expanding a Template .. 188

5.2.3. Example .. 190

6. The Java Rule Engine API ... 195

6.1. Introduction ... 195

6.2. How To Use ... 195

6.2.1. Building and Registering RuleExecutionSets .. 195

6.2.2. Using Stateful and Stateless RuleSessions .. 197

6.3. References ... 199

7. The Rule IDE (Eclipse) ... 201

7.1. Features Outline ... 202

7.2. Creating a Rule Project ... 203

7.3. Creating a New Rule and Wizards ... 204

7.4. Textual Rule Editor ... 206

7.5. The Guided Editor (Rule GUI) .. 208

7.6. Drools Views .. 209

7.6.1. The Working Memory View ... 210

7.6.2. The Agenda View ... 210

7.6.3. The Global Data View .. 211

7.6.4. The Audit View .. 211

7.7. Domain Specific Languages .. 213

7.7.1. Editing languages ... 214

7.8. The Rete View .. 215

7.9. Large DRL Files .. 216

7.10. Debugging Rules ... 217

7.10.1. Creating Breakpoints .. 218

7.10.2. Debugging Rules .. 218

8. Examples ... 223

8.1. Getting the Examples .. 223

8.2. Hello World ... 223

8.3. State Example .. 229

8.3.1. Understanding the State Example ... 229

8.4. Fibonacci Example .. 238

8.5. Banking Tutorial .. 244

Drools Expert User Guide

vi

8.6. Pricing Rule Decision Table Example ... 258

8.6.1. Executing the example ... 259

8.6.2. The decision table .. 260

8.7. Pet Store Example .. 262

8.8. Honest Politician Example ... 274

8.9. Sudoku Example ... 278

8.9.1. Sudoku Overview ... 279

8.9.2. Running the Example ... 279

8.9.3. Java Source and Rules Overview .. 287

8.9.4. Sudoku Validator Rules (validatorSudoku.drl) ... 288

8.9.5. Sudoku Solving Rules (solverSudoku.drl) ... 289

8.9.6. Suggestions for Future Developments ... 290

8.10. Number Guess .. 291

8.11. Miss Manners and Benchmarking ... 298

8.11.1. Introduction .. 298

8.11.2. Indepth Discussion ... 301

8.11.3. Output Summary .. 308

8.12. Conway's Game Of Life ... 311

Index ... 321

vii

viii

Chapter 1.

1

Chapter 1. The Rule Engine

1.1. What is a Rule Engine?

1.1.1. Introduction and Background

Artificial Intelligence (A.I.) is a very broad research area that focuses on "Making computers

think like people" and includes disciplines such as Neural Networks, Genetic Algorithms, Decision

Trees, Frame Systems and Expert Systems. Knowledge representation is the area of A.I.

concerned with how knowledge is represented and manipulated. Expert Systems use Knowledge

representation to facilitate the codification of knowledge into a knowledge base which can be used

for reasoning, i.e., we can process data with this knowledge base to infer conclusions. Expert

Systems are also known as Knowledge-based Systems and Knowledge-based Expert Systems

and are considered to be "applied artificial intelligence". The process of developing with an Expert

System is Knowledge Engineering. EMYCIN was one of the first "shells" for an Expert System,

which was created from the MYCIN medical diagnosis Expert System. Whereas early Expert

Systems had their logic hard-coded, "shells" separated the logic from the system, providing an

easy to use environment for user input. Drools is a Rule Engine that uses the rule-based approach

to implement an Expert System and is more correctly classified as a Production Rule System.

The term "Production Rule" originates from formal grammars where it is described as "an abstract

structure that describes a formal language precisely, i.e., a set of rules that mathematically

delineates a (usually infinite) set of finite-length strings over a (usually finite) alphabet" (Wikipedia

[http://en.wikipedia.org/wiki/Formal_grammar]).

Business Rule Management Systems build additional value on top of a general purpose Rule

Engine by providing business user focused systems for rule creation, management, deployment,

collaboration, analysis and end user tools. Further adding to this value is the fast evolving and

popular methodology "Business Rules Approach", which is a helping to formalize the role of Rule

Engines in the enterprise.

The term Rule Engine is quite ambiguous in that it can be any system that uses rules, in any form,

that can be applied to data to produce outcomes. This includes simple systems like form validation

and dynamic expression engines. The book "How to Build a Business Rules Engine (2004)" by

Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter a

database schema to hold validation rules. The book then shows how to generate VB code from

those validation rules to validate data entry. This, while a very valid and useful topic for some,

caused quite a surprise to this author, unaware at the time in the subtleties of Rules Engines'

differences, who was hoping to find some hidden secrets to help improve the Drools engine. JBoss

jBPM uses expressions and delegates in its Decision nodes which control the transitions in a

Workflow. At each node it evaluates ther is a rule set that dictates the transition to undertake, and

so this is also a Rule Engine. While a Production Rule System is a kind of Rule Engine and also

an Expert System, the validation and expression evaluation Rule Engines mentioned previously

are not Expert Systems.

http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formal_grammar

Chapter 1. The Rule Engine

2

A Production Rule System is Turing complete, with a focus on knowledge representation to

express propositional and first order logic in a concise, non-ambiguous and declarative manner.

The brain of a Production Rules System is an Inference Engine that is able to scale to a large

number of rules and facts. The Inference Engine matches facts and data against Production Rules

- also called Productions or just Rules - to infer conclusions which result in actions. A Production

Rule is a two-part structure using First Order Logic for reasoning over knowledge representation.

when

 <conditions>

then

 <actions>;

The process of matching the new or existing facts against Production Rules is called Pattern

Matching, which is performed by the Inference Engine. There are a number of algorithms used

for Pattern Matching by Inference Engines including:

• Linear

• Rete

• Treat

• Leaps

Drools implements and extends the Rete algorithm; Leaps used to be provided but was retired

as it became unmaintained. The Drools Rete implementation is called ReteOO, signifying that

Drools has an enhanced and optimized implementation of the Rete algorithm for object oriented

systems. Other Rete based engines also have marketing terms for their proprietary enhancements

to Rete, like RetePlus and Rete III. The most common enhancements are covered in "Production

Matching for Large Learning Systems (Rete/UL)" (1995) by Robert B. Doorenbos.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches

against are kept in the Working Memory. Facts are asserted into the Working Memory where they

may then be modified or retracted. A system with a large number of rules and facts may result in

many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda

manages the execution order of these conflicting rules using a Conflict Resolution strategy.

Introduction and Background

3

Figure 1.1. High-level View of a Rule Engine

There are two methods of execution for a rule system: Forward Chaining and Backward Chaining;

systems that implement both are called Hybrid Rule Systems. Understanding these two modes of

operation is the key to understanding why a Production Rule System is different and how to get

the best from it. Forward chaining is "data-driven" and thus reactionary, with facts being asserted

into working memory, which results in one or more rules being concurrently true and scheduled for

execution by the Agenda. In short, we start with a fact, it propagates and we end in a conclusion.

Drools is a forward chaining engine.

Chapter 1. The Rule Engine

4

Figure 1.2. Forward Chaining

Backward chaining is "goal-driven", meaning that we start with a conclusion which the engine tries

to satisfy. If it can't it then searches for conclusions that it can satisfy; these are known as subgoals,

that will help satisfy some unknown part of the current goal. It continues this process until either

the initial conclusion is proven or there are no more subgoals. Prolog is an example of a Backward

Chaining engine; Drools plans to provide support for Backward Chaining in a future release.

Introduction and Background

5

Figure 1.3. Backward Chaining

Chapter 1. The Rule Engine

6

1.2. Why use a Rule Engine?

Some frequently asked questions:

1. When should you use a rule engine?

2. What advantage does a rule engine have over hand coded "if...then" approaches?

3. Why should you use a rule engine instead of a scripting framework, like BeanShell?

We will attempt to address these questions below.

1.2.1. Advantages of a Rule Engine

• Declarative Programming

Rule engines allow you to say "What to do", not "How to do it".

The key advantage of this point is that using rules can make it easy to express solutions to

difficult problems and consequently have those solutions verified. Rules are much easier to

read than code.

Rule systems are capable of solving very, very hard problems, providing an explanation of how

the solution was arrived at and why each "decision" along the way was made (not so easy with

other of AI systems like neural networks or the human brain - I have no idea why I scratched

the side of the car).

• Logic and Data Separation

Your data is in your domain objects, the logic is in the rules. This is fundamentally breaking the

OO coupling of data and logic, which can be an advantage or a disadvantage depending on

your point of view. The upshot is that the logic can be much easier to maintain as there are

changes in the future, as the logic is all laid out in rules. This can be especially true if the logic

is cross-domain or multi-domain logic. Instead of the logic being spread across many domain

objects or controllers, it can all be organized in one or more very distinct rules files.

• Speed and Scalability

The Rete algorithm,the Leaps algorithm, and their descendants such as Drools' ReteOO,

provide very efficient ways of matching rule patterns to your domain object data. These are

especially efficient when you have datasets that change in small portions as the rule engine

can remember past matches. These algorithms are battle proven.

• Centralization of Knowledge

By using rules, you create a repository of knowledge (a knowledge base) which is executable.

This means it's a single point of truth, for business policy, for instance. Ideally rules are so

readable that they can also serve as documentation.

When should you use a Rule Engine?

7

• Tool Integration

Tools such as Eclipse (and in future, Web based user interfaces) provide ways to edit and

manage rules and get immediate feedback, validation and content assistance. Auditing and

debugging tools are also available.

• Explanation Facility

Rule systems effectively provide an "explanation facility" by being able to log the decisions made

by the rule engine along with why the decisions were made.

• Understandable Rules

By creating object models and, optionally, Domain Specific Languages that model your problem

domain you can set yourself up to write rules that are very close to natural language. They lend

themselves to logic that is understandable to, possibly nontechnical, domain experts as they

are expressed in their language, with all the program plumbing, the technical know-how being

hidden away in the usual code.

1.2.2. When should you use a Rule Engine?

The shortest answer to this is "when there is no satisfactory traditional programming approach to

solve the problem.". Given that short answer, some more explanation is required. The reason why

there is no "traditional" approach is possibly one of the following:

• The problem is just too fiddle for traditional code.

The problem may not be complex, but you can't see a non-fragile way of building a solution for it.

• The problem is beyond any obvious algorithmic solution.

It is a complex problem to solve, there are no obvious traditional solutions, or basically the

problem isn't fully understood.

• The logic changes often

The logic itself may even be simple but the rules change quite often. In many organizations

software releases are few and far between and pluggable rules can help provide the "agility"

that is needed and expected in a reasonably safe way.

• Domain experts (or business analysts) are readily available, but are nontechnical.

Domain experts often possess a wealth of knowledge about business rules and processes. They

typically are nontechnical, but can be very logical. Rules can allow them to express the logic in

their own terms. Of course, they still have to think critically and be capable of logical thinking.

Many people in nontechnical positions do not have training in formal logic, so be careful and

work with them, as by codifying business knowledge in rules, you will often expose holes in the

way the business rules and processes are currently understood.

Chapter 1. The Rule Engine

8

If rules are a new technology for your project teams, the overhead in getting going must be factored

in. It is not a trivial technology, but this document tries to make it easier to understand.

Typically in a modern OO application you would use a rule engine to contain key parts of your

business logic, especially the really messy parts. This is an inversion of the OO concept of

encapsulating all the logic inside your objects. This is not to say that you throw out OO practices,

on the contrary in any real world application, business logic is just one part of the application.

If you ever notice lots of conditional statements such as "if" and "switch", an overabundance of

strategy patterns and other messy logic in your code that just doesn't feel right: that would be a

place for rules. If there is some such logic and you keep coming back to fix it, either because you

got it wrong, or the logic or your understanding changes: think about using rules. If you are faced

with tough problems for which there are no algorithms or patterns: consider using rules.

Rules could be used embedded in your application or perhaps as a service. Often a rule engine

works best as "stateful" component, being an integral part of an application. However, there have

been successful cases of creating reusable rule services which are stateless.

For your organization it is important to decide about the process you will use for updating rules in

systems that are in production. The options are many, but different organizations have different

requirements. Frequently, rules maintenance is out of the control of the application vendors or

project developers.

1.2.3. When not to use a Rule Engine

To quote a Drools mailing list regular:

It seems to me that in the excitement of working with rules engines, that people

forget that a rules engine is only one piece of a complex application or solution.

Rules engines are not really intended to handle workflow or process executions

nor are workflow engines or process management tools designed to do rules. Use

the right tool for the job. Sure, a pair of pliers can be used as a hammering tool

in a pinch, but that's not what it's designed for.

—Dave Hamu

As rule engines are dynamic (dynamic in the sense that the rules can be stored and managed

and updated as data), they are often looked at as a solution to the problem of deploying software.

(Most IT departments seem to exist for the purpose of preventing software being rolled out.) If this

is the reason you wish to use a rule engine, be aware that rule engines work best when you are

able to write declarative rules. As an alternative, you can consider data-driven designs (lookup

tables), or script processing engines where the scripts are managed in a database and are able

to be updated on the fly.

1.2.4. Scripting or Process Engines

Hopefully the preceding sections have explained when you may want to use a rule engine.

Alternatives are script-based engines that provide the drive for "changes on the fly", and there

are many such solutions.

Strong and Loose Coupling

9

Alternatively Process Engines (also capable of workflow) such as jBPM allow you to graphically

(or programmatically) describe steps in a process. Those steps can also involve decision points

which are in themselves a simple rule. Process engines and rules often can work nicely together,

so they are not mutually exclusive.

One key point to note with rule engines is that some rule engines are really scripting engines.

The downside of scripting engines is that you are tightly coupling your application to the scripts. If

they are rules, you are effectively calling rules directly and this may cause more difficulty in future

maintenance, as they tend to grow in complexity over time. The upside of scripting engines is that

they can be easier to implement initially, producing results quickly, and are conceptually simpler

for imperative programmers.

Many people have also implemented data-driven systems successfully in the past (where there

are control tables that store meta-data that changes your applications behavior) - these can work

well when the control can remain very limited. However, they can quickly grow out of control if

extended too much (such that only the original creators can change the applications behavior) or

they cause the application to stagnate as they are too inflexible.

1.2.5. Strong and Loose Coupling

No doubt you have heard terms like "tight coupling" and "loose coupling" in systems design.

Generally people assert that "loose" or "weak" coupling is preferable in design terms, due to the

added flexibility it affords. Similarly, you can have "strongly coupled" and "weakly coupled" rules.

Strongly coupled in this sense means that one rule "firing" will clearly result in another rule firing,

and so on; in other words, there is a clear (probably obvious) chain of logic. If your rules are all

strongly coupled, the chances are that the will turn out to be inflexible, and, more significantly, that

a rule engine is an overkill. A clear chain can be hard coded, or implemented using a Decision

Tree. This is not to say that strong coupling is inherently bad, but it is a point to keep in mind

when considering a rule engine and the way you capture the rules. "Loosely" coupled rules should

result in a system that allows rules to be changed, removed and added without requiring changes

to other, unrelated rules.

10

Chapter 2.

11

Chapter 2. Quick Start

2.1. The Basics

2.1.1. Stateless Knowledge Session

So where do we get started, there are so many use cases and so much functionality in a rule engine

such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the complexity is

layered and you can ease yourself into with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be

called like a function passing it some data and then receiving some results back. Some common

use cases for stateless sessions are, but not limited to:

• Validation

• Is this person eligible for a mortgage?

• Calculation

• Compute a mortgage premium.

• Routing and Filtering

• Filter incoming messages, such as emails, into folders.

• Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {

 private String name;

 private int age;

 private boolean valid;

 // getter and setter methods here

}

Now that we have our data model we can write our first rule. We assume that the application uses

rules to refute invalid applications. As this is a simple validation use case we will add a single rule

to disqualify any applicant younger than 18.

package com.company.license

Chapter 2. Quick Start

12

rule "Is of valid age"

when

 $a : Applicant(age < 18)

then

 $a.setValid(false);

end

To make the engine aware of data, so it can be processed against the rules, we have to insert

the data, much like with a database. When the Applicant instance is inserted into the engine it

is evaluated against the constraints of the rules, in this case just two constraints for one rule.

We say two because the type Applicant is the first object type constraint, and age < 18 is the

second field constraint. An object type constraint plus its zero or more field constraints is referred

to as a pattern. When an inserted instance satisfies both the object type constraint and all the field

constraints, it is said to be matched. The $a is a binding variable which permits us to reference the

matched object in the consequence. There its properties can be updated. The dollar character ('$')

is optional, but it helps to differentiate variable names from field names. The process of matching

patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

Let's assume that the rules are in the same folder as the classes, so we can use the classpath

resource loader to build our first KnowledgeBase. A Knowledge Base is what we call our collection

of compiled rules, which are compiled using the KnowledgeBuilder.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("licenseApplication.drl", getClass()),

 ResourceType.DRL);

if (kbuilder.hasErrors()) {

 System.err.println(builder.getErrors().toString());

}

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

The above code snippet looks on the classpath for the licenseApplication.drl file, using the

method newClassPathResource(). The resource type is DRL, short for "Drools Rule Language".

Once the DRL file has been added we can check the Knowledge Builder object for any errors.

If there are no errors, we can add the resulting packages to our Knowledge Base. Now we are

ready to build our session and execute against some data:

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

assertTrue(applicant.isValid());

ksession.execute(applicant);

assertFalse(applicant.isValid());

Stateless Knowledge Session

13

The preceding code executes the data against the rules. Since the applicant is under the age of

18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can

execute against any object implementing Iterable, such as a collection. Let's add another class

called Application, which has the date of the application, and we'll also move the boolean valid

field to the Application class.

public class Applicant {

 private String name;

 private int age;

 // getter and setter methods here

}

public class Application {

 private Date dateApplied;

 private boolean valid;

 // getter and setter methods here

}

We can also add another rule to validate that the application was made within a period of time.

package com.company.license

rule "Is of valid age"

when

 Applicant(age < 18)

 $a : Application()

then

 $a.setValid(false);

end

rule "Application was made this year"

when

 $a : Application(dateApplied > "01-jan-2009")

then

 $a.setValid(false);

end

Unfortunately a Java array does not implement the Iterable interface, so we have to use the JDK

converter method Arrays.asList(...). The code shown below executes against an iterable list,

where all collection elements are inserted before any matched rules are fired.

Chapter 2. Quick Start

14

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

Application application = new Application();

assertTrue(application());

ksession.execute(Arrays.asList(new Object[] { application, applicant }));

assertFalse(application());

The two execute methods execute(Object object) and execute(Iterable objects) are

actually convenience methods for the interface BatchExecutor's method execute(Command

command).

A CommandFactory is used to create commands, so that the following is equivalent to

execute(Iterable it):

ksession.execute(CommandFactory.newInsertIterable(new Object[] { application, applicant }));

Batch Executor and Command Factory are particularly useful when working with multiple

Commands and with output identifiers for obtaining results.

List<Command> cmds = new ArrayList<Command>();

cmds.add(CommandFactory.newInsert(new Person("Mr John Smith"), "mrSmith");

cmds.add(CommandFactory.newInsert(new Person("Mr John Doe"), "mrDoe");

BatchExecutionResults results =

 ksession.execute(CommandFactory.newBatchExecution(cmds));

assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

CommandFactory supports many other Commands that can be used in the BatchExecutor like

StartProcess, Query, and SetGlobal.

2.1.2. Stateful Knowledge Session

Stateful Sessions are longer lived and allow iterative changes over time. Some common use cases

for Stateful Sessions are, but not limited to:

• Monitoring

• Stock market monitoring and analysis for semi-automatic buying.

• Diagnostics

• Fault finding, medical diagnostics

Stateful Knowledge Session

15

• Logistics

• Parcel tracking and delivery provisioning

• Compliance

• Validation of legality for market trades.

In contrast to a Stateless Session, the dispose() method must be called afterwards to ensure

there are no memory leaks, as the Knowledge Base contains references to Stateful Knowledge

Sessions when they are created. StatefulKnowledgeSession also supports the BatchExecutor

interface, like StatelessKnowledgeSession, the only difference being that the FireAllRules

command is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four

classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,

we represent that with a single Fire instance.

public class Room {

 private String name

 // getter and setter methods here

}

public classs Sprinkler {

 private Room room;

 private boolean on;

 // getter and setter methods here

}

public class Fire {

 private Room room;

 // getter and setter methods here

}

public class Alarm {

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data

was introduced. That example assumed that only a single instance of each object type was ever

inserted and thus only used literal constraints. However, a house has many rooms, so rules must

express relationships between objects, such as a sprinkler being in a certain room. This is best

done by using a binding variable as a constraint in a pattern. This "join" process results in what

is called cross products, which are covered in the next section.

When a fire occurs an instance of the Fire class is created, for that room, and inserted into the

session. The rule uses a binding on the room field of the Fire object to constrain matching to

the sprinkler for that room, which is currently off. When this rule fires and the consequence is

executed the sprinkler is turned on.

Chapter 2. Quick Start

16

rule "When there is a fire turn on the sprinkler"

when

 Fire($room : room)

 $sprinkler : Sprinkler(room == $room, on == false)

then

 modify($sprinkler) { setOn(true) };

 System.out.println("Turn on the sprinkler for room " + $room.getName());

end

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule

we use the modify statement, which acts as a sort of "with" statement. It may contain a series

of comma separated Java expressions, i.e., calls to setters of the object selected by the modify

statement's control expression. This modifies the data, and makes the engine aware of those

changes so it can reason over them once more. This process is called inference, and it's essential

for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the

engine does not need to be aware of changes to data. Inference can also be turned off explicitly

by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?

How do we determine that a fire has been extinguished, i.e., that there isn't a Fire object any

more? Previously the constraints have been sentences according to Propositional Logic, where

the engine is constraining against individual intances. Drools also has support for First Order Logic

that allows you to look at sets of data. A pattern under the keyword not matches when something

does not exist. The rule given below turns the sprinkler off as soon as the fire in that room has

disappeared.

rule "When the fire is gone turn off the sprinkler"

when

 $room : Room()

 $sprinkler : Sprinkler(room == $room, on == true)

 not Fire(room == $room)

then

 modify($sprinkler) { setOn(false) };

 System.out.println("Turn off the sprinkler for room " + $room.getName());

end

While there is one sprinkler per room, there is just a single alarm for the building. An Alarm object

is created when a fire occurs, but only one Alarm is needed for the entire building, no matter how

many fires occur. Previously not was introduced to match the absence of a fact; now we use its

complement exists which matches for one or more instances of some category.

Stateful Knowledge Session

17

rule "Raise the alarm when we have one or more fires"

when

 exists Fire()

then

 insert(new Alarm());

 System.out.println("Raise the alarm");

end

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used

again.

rule "Cancel the alarm when all the fires have gone"

when

 not Fire()

 $alarm : Alarm()

then

 retract($alarm);

 System.out.println("Cancel the alarm");

end

Finally there is a general health status message that is printed when the application first starts

and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"

when

 not Alarm()

 not Sprinkler(on === true)

then

 System.out.println("Everything is ok");

end

The above rules should be placed in a single DRL file and saved to some directory on the classpath

and using the file name fireAlarm.drl, as in the Stateless Session example. We can then build

a Knowledge Base, as before, just using the new name fireAlarm.drl. The difference is that

this time we create a Stateful Session from the Knowledge Base, whereas before we created a

Stateless Session.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

Chapter 2. Quick Start

18

kbuilder.add(ResourceFactory.newClassPathResource("fireAlarm.drl", getClass()),

 ResourceType.DRL);

if (kbuilder.hasErrors()) {

 System.err.println(builder.getErrors().toString());

}

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

With the session created it is now possible to iteratvely work with it over time. Four Room objects

are created and inserted, as well as one Sprinkler object for each room. At this point the engine

has done all of its matching, but no rules have fired yet. Calling ksession.fireAllRules() allows

the matched rules to fire, but without a fire that will just produce the health message.

String[] names = new String[]{"kitchen", "bedroom", "office", "livingroom"};

Map<String,Room> name2room = new HashMap<String,Room>();

for(String name: names){

 Room room = new Room(name);

 name2room.put(name, room);

 ksession.insert(room);

 Sprinkler sprinkler = new Sprinkler(room);

 ksession.insert(sprinkler);

}

ksession.fireAllRules()

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned FactHandle.

A Fact Handle is an internal engine reference to the inserted instance and allows instances to be

retracted or modified at a later point in time. With the fires now in the engine, once fireAllRules()

is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(name2room.get("kitchen"));

Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);

FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

A Little Theory

19

> Raise the alarm

> Turn on the sprinkler for room kitchen

> Turn on the sprinkler for room office

After a while the fires will be put out and the Fire instances are retracted. This results in the

sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed

again.

ksession.retract(kitchenFireHandle);

ksession.retract(officeFireHandle);

ksession.fireAllRules();

> Turn on the sprinkler for room office

> Turn on the sprinkler for room kitchen

> Cancel the alarm

> Everything is ok

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value

and power of a declarative rule system.

2.2. A Little Theory

2.2.1. Methods versus Rules

People often confuse methods and rules, and new rule users regular ask, "How do I call a rule?"

After the last section, you are now feeling like a rule expert and the answer to that is obvious, but

let's summarize the differences nonetheless.

public void helloWorld(Person person) {

 if (person.getName().equals("Chuck")) {

 System.out.println("Hello Chuck");

 }

}

• Methods are called directly.

• Specific instances are passed.

• One call results in a single execution.

Chapter 2. Quick Start

20

rule "Hello World"

 when

 Person(name == "Chuck")

 then

 System.out.println("Hello Chuck");

 end

• Rules execute by matching against any data as long it is inserted into the engine.

• Rules can never be called directly.

• Specific instances cannot be passed to a rule.

• Depending on the matches, a rule may fire once or several times, or not at all.

2.2.2. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment

that the data from the fire alarm example were used in combination with the following rule where

there ar no field constraints:

rule

when

 $room : Room()

 $sprinkler : Sprinkler()

then

 System.out.println("room:" + $room.getName() +

 " sprinkler:" + $sprinkler.getRoom().getName());

end

In SQL terms this would be like doing select * from Room, Sprinkler and every row in the

Room table would be joined with every row in the Sprinkler table resulting in the following output:

room:office sprinker:office

room:office sprinkler:kitchen

room:office sprinkler:livingroom

room:office sprinkler:bedroom

room:kitchen sprinkler:office

room:kitchen sprinkler:kitchen

room:kitchen sprinkler:livingroom

room:kitchen sprinkler:bedroom

room:livingroom sprinkler:office

Activations, Agenda and Conflict Sets.

21

room:livingroom sprinkler:kitchen

room:livingroom sprinkler:livingroom

room:livingroom sprinkler:bedroom

room:bedroom sprinkler:office

room:bedroom sprinkler:kitchen

room:bedroom sprinkler:livingroom

room:bedroom sprinkler:bedroom

These cross products can obviously become huge, and they may very well contain spurious data.

The size of cross products is often the source of performance problems for new rule authors. From

this it can be seen that it's always desirable to constrain the cross products, which is done with

the variable constraint.

rule

when

 $room : Room()

 $sprinkler : Sprinkler(room == $room)

then

 System.out.println("room:" + $room.getName() +

 " sprinkler:" + $sprinkler.getRoom().getName());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually

HQL) the corresponding query would be select * from Room, Sprinkler where Room ==

Sprinkler.room.

room:office sprinkler:office

room:kitchen sprinkler:kitchen

room:livingroom sprinkler:livingroom

room:bedroom sprinkler:bedroom

2.2.3. Activations, Agenda and Conflict Sets.

So far the data and the matching process has been simple and small. To mix things up a bit a

new example will be explored that handles cashflow calculations over date periods. The state of

the engine will be illustratively shown at key stages to help get a better understanding of what is

actually going on under the hood. Three classes will be used, as shown below.

public class CashFlow {

 private Date date;

Chapter 2. Quick Start

22

 private double amount;

 private int type;

 long accountNo;

 // getter and setter methods here

}

public class Account {

 private long accountNo;

 private double balance;

 // getter and setter methods here

}

public AccountPeriod {

 private Date start;

 private Date end;

 // getter and setter methods here

}

By now you already know how to create Knowledge Bases and how to instantiate facts to populate

the StatefulKnowledgeSession, so tables will be used to show the state of the inserted data,

as it makes things clearer for illustration purposes. The tables below show that a single fact was

inserted for the Account. Also inserted are a series of debits and credits as CashFlow objects for

that account, extending over two quarters.

Figure 2.1. CashFlows and Account

Two rules can be used to determine the debit and credit for that quarter and update the Account

balance. The two rules below constrain the cashflows for an account for a given time period. Notice

the "&&" which use short cut syntax to avoid repeating the field name twice.

rule "increase balance for credits"

when

 ap : AccountPeriod()

 acc : Account($accountNo : accountNo)

 CashFlow(type == CREDIT,

 accountNo == $accountNo,

rule "decrease balance for debits"

when

 ap : AccountPeriod()

 acc : Account($accountNo : accountNo)

 CashFlow(type == DEBIT,

 accountNo == $accountNo,

Activations, Agenda and Conflict Sets.

23

 date >= ap.start && <= ap.end,

 $amount : amount)

then

 acc.balance += $amount;

end

 date >= ap.start && <= ap.end,

 $amount : amount)

then

 acc.balance -= $amount;

end

If the AccountPeriod is set to the first quarter we constrain the rule "increase balance for credits"

to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 2.2. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched

during the insertion stage and, as you discovered in the previous chapter, does not fire straight

away, but only after fireAllRules() is called. Meanwhile, the rule plus its matched data is placed

on the Agenda and referred to as an Activation. The Agenda is a table of Activations that are able

to fire and have their consequences executed, as soon as fireAllRules() is called. Activations on

the Agenda are executed in turn. Notice that the order of execution so far is considered arbitrary.

Figure 2.3. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Figure 2.4. CashFlows and Account

Chapter 2. Quick Start

24

If the AccountPeriod is updated to the second quarter, we have just a single matched row of

data, and thus just a single Activation on the Agenda.

Figure 2.5. CashFlows and Account

The firing of that Activation results in a balance of 25.

Figure 2.6. CashFlows and Account

What if you don't want the order of Activation execution to be arbitrary? When there is one or

more Activations on the Agenda they are said to be in conflict, and a conflict resolver strategy is

used to determine the order of execution. At the simplest level the default strategy uses salience

to determine rule priority. Each rule has a default value of 0, the higher the value the higher the

priority. To illustrate this we add a rule to print the account balance, where we want this rule to be

executed after all the debits and credits have been applied for all accounts. We achieve this by

assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 2.1.

rule "Print balance for AccountPeriod"

 salience -50

 when

 ap : AccountPeriod()

 acc : Account()

 then

 System.out.println(acc.accountNo + " : " + acc.balance);

end

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in

arbitrary order, while the print rule is ranked last, to execute afterwards.

Activations, Agenda and Conflict Sets.

25

Figure 2.7. CashFlows and Account

Earlier we showed how rules would equate to SQL, which can often help people with an SQL

background to understand rules. The two rules above can be represented with two views and a

trigger for each view, as below:

Table 2.2.

select * from Account acc,

 Cashflow cf,

 AccountPeriod ap

where acc.accountNo == cf.accountNo and

 cf.type == CREDIT and

 cf.date >= ap.start and

 cf.date <= ap.end

select * from Account acc,

 Cashflow cf,

 AccountPeriod ap

where acc.accountNo == cf.accountNo and

 cf.type == DEBIT and

 cf.date >= ap.start and

 cf.date <= ap.end

trigger : acc.balance += cf.amount trigger : acc.balance -= cf.amount

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively

specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools

plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed

before the reporting rules.

Chapter 2. Quick Start

26

The use of the ruleflow-group attribute in a rule is shown below.

Table 2.3.

rule "increase balance for credits"

 ruleflow-group "calculation"

when

 ap : AccountPeriod()

 acc : Account($accountNo : accountNo)

 CashFlow(type == CREDIT,

 accountNo == $accountNo,

 date >= ap.start && <= ap.end,

 $amount : amount)

then

 acc.balance += $amount;

end

rule "Print balance for AccountPeriod"

 ruleflow-group "report"

when

 ap : AccountPeriod()

 acc : Account()

then

 System.out.println(acc.accountNo +

 " : " + acc.balance);

end

2.2.4. Inference

Inference has a bad names these days, as something not relevant to business use cases and

just too complicated to be useful. It is true that contrived and complicated examples occur with

Inference

27

inference, but that should not detract from the fact that simple and useful ones exist too. But more

than this, correct use of inference can crate more agile and less error prone businesses with easier

to maintain software.

So what is inference? Something is inferred when we gain knowledge of something from using

previous knowledge. For example given a Person fact with an age field and a rule that provides

age policy control, we can infer whether a Person is an adult or a child and act on this.

rule "Infer Adult"

when

 $p : Person(age >= 18)

then

 insert(new IsAdult($p))

end

So in the above every Person who is 18 or over will have an instance of IsAdult inserted for them.

This fact is special in that it is known as a relation. We can use this inferred relation in any rule:

$p : Person()

IsAdult(person == $p)

So now we know what inference is, and have a basic example, how does this facilitate good rule

design and maintenance?

Let's take a government department that are responsible for issuing ID cards when children

become adults, hence forth referred to as ID department. They might have a decision table that

includes logic like this, which says when an adult living in london is 18 or over, issue the card:

However the ID department does not set the policy on who an adult is. That's done at a central

government level. If the central government where to change that age to 21 there is a change

management process. Someone has to liaise with the ID department and make sure their systems

are updated, in time for the law going live.

Chapter 2. Quick Start

28

This change management process and communication between departments is not ideal for

an agile environment and change become costly and error prone. Also the card department is

managing more information than it needs to be aware of with its "monolothic" approach to rules

management which is "leaking" information better placed else where. By this I mean that it doesn't

care what explicit "age >= 18" information determines whether someone is an adult, only that they

are an adult.

Instead what if we were to split (de-couple) the authoring responsibility, so the central government

maintains its rules and the ID department maintains its.

So its the central governments job to determine who is an adult and if they change the law they

just update their central repository with the new rules, which others use:

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the

seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for it's meaning.

Now if anyone uses the above rules, they no longer need to be aware of explicit information that

determines whether someone is an adult or not. They can just use the inferred fact:

While the example is very minimal and trivial it illustrates some important points. We started with

a monolithic and leaky approach to our knowledge engineering. We create a single decision table

that had all possible information in it that leaks information from central government that the ID

department did not care about and did not want to manage.

We first de-coupled the knowledge process so each department was responsible for only what it

needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The

use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=

18".

Inference and TruthMaintenance

29

So a general rule or thumb when doing your knowledge engineering is:

• Bad

• Monolithic

• Leaky

• Good

• De-couple knowledge responsibilities

• Encapsulate knowledge

• Provide semantic abstractions for those encapsulations

2.2.5. Inference and TruthMaintenance

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,

either a child or adult pass.

rule "Issue Child Bus Pass" when

 $p : Person(age < 16)

then

 insert(new ChildBusPass($p));

end

rule "Issue Adult Bus Pass" when

 $p : Person(age >= 16)

then

 insert(new AdultBusPass($p));

end

As before the above example is considered monolithic, leaky and providing poor separation of

concerns.

As before we can provide a more robust application with a separation of concerns using inference.

Notice this time we don't just insert the inferred object, we use "logicalInsert":

rule "Infer Child" when

 $p : Person(age < 16)

then

 logicalInsert(new IsChild($p))

end

Chapter 2. Quick Start

30

rule "Infer Adult" when

 $p : Person(age >= 16)

then

 logicalInsert(new IsAdult($p))

end

A "logicalInsert" is part of the Drools Truth Maintenance System (TMS). Here the fact is logically

inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule

becomes false the fact is automatically retracted. This works particularly well as the two rules are

mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once

the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

We can now bring back in the code to issue the passes, these two can also be logically inserted,

as the TMS supports chaining of logical insertions for a cascading set of retracts.

rule "Issue Child Bus Pass" when

 $p : Person()

 IsChild(person =$p)

then

 logicalInsert(new ChildBusPass($p));

end

rule "Issue Adult Bus Pass" when

 $p : Person(age >= 16)

 IsAdult(person =$p)

then

 logicalInsert(new AdultBusPass($p));

end

Now when the person changes from being 15 to 16, not only is the IsChild fact automatically

retracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the

'not' conditional element to handle notifications, in this situation a request for the returning of the

pass. So when the TMS automatically retracts the ChildBusPass object, this rule triggers and

sends a request to the person:

rule "Return ChildBusPass Request "when

 $p : Person()

 not(ChildBusPass(person == $p))

then

 requestChildBusPass($p);

end

More on building and deploying

31

2.3. More on building and deploying

2.3.1. Knowledge Base by Configuration Using Changesets

So far, the programmatic API has been used to build a Knowledge Base. Quite often it's more

desirable to do this via configuration. To facilitate this, Drools supports the "Changeset" feature.

The file changeset.xml contains a list of resources, and it may also point recursively to another

changeset XML file. Currently there is no XML schema for the changeset XML, but we hope to

add one soon. A few examples will be shown to give you the gist of things. A resource approach is

employed that uses a prefix to indicate the protocol. All the protocols provided by java.net.URL,

such as "file" and "http", are supported, as well as an additional "classpath". Currently the type

attribute must always be specified for a resource, as it is not inferred from the file name extension.

Here is a simple example that points to a http location for some rules.

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set http://anonsvn.jboss.org/

repos/labs/labs/jbossrules/trunk/drools-api/src/main/resources/change-set-1.0.0.xsd' >

 <add>

 <resource source='http:org/domain/myrules.drl' type='DRL' />

 </add>

 </change-set>

To use the above XML, the code is almost identical as before, except we change the resource

type to CHANGE_SET.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClasspathResource("myChangeSet.xml", getClass()),

 ResourceType.CHANGE_SET);

if (kbuilder.hasErrors()) {

 System.err.println(builder.getErrors().toString());

}

Changesets can include any number of resources, and they even support additional configuration

information, which currently is only needed for decision tables. The example below is expanded

to load the rules from a http URL location, and an Excel decision table from the classpath.

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd http://anonsvn.jboss.org/

repos/labs/labs/jbossrules/trunk/drools-api/src/main/resources/change-set-1.0.0.xsd' >

Chapter 2. Quick Start

32

 <add>

 <resource source='http:org/domain/myrules.drl' type='DRL' />

 <resource source='classpath:data/IntegrationExampleTest.xls' type="DTABLE">

 <decisiontable-conf input-type="XLS" worksheet-name="Tables_2" />

 </resource>

 </add>

 </change-set>

It is also possible to specify a directory, to add the contents of that directory. It is expected that all

the files are of the specified type, since type is not yet inferred from the file name extensions.

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd http://anonsvn.jboss.org/

repos/labs/labs/jbossrules/trunk/drools-api/src/main/resources/change-set-1.0.0.xsd' >

 <add>

 <resource source='file://myfolder/' type='DRL' />

 </add>

 </change-set>

2.3.2. Knowledge Agent

The Knowlege Agent provides automatic loading, caching and re-loading of resources and is

configured from a properties files. The Knowledge Agent can update or rebuild this Knowlege

Base as the resources it uses are changed. The strategy for this is determined by the configuration

given to the factory, but it is typically pull-based using regular polling. We hope to add push-based

updates and rebuilds in future versions.

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");

kagent.applyChangeSet(ResourceFactory.newUrlResource(url));

KnowledgeBase kbase = kagent.getKnowledgeBase();

A KnowledgeAgent object will continuously scan all the added resources, using a default polling

interval of 60 seconds and, when some last modification date is updated, it will applied the

changes into the cached Knowledge Base using the new resources. Note that the previous

KnowledgeBase reference will still exist and you'll have to call getKnowledgeBase() to access

the newly built KnowledgeBase. If a directory is specified as part of the change set, the entire

contents of that directory will be scanned for changes. The way modifications are applied depends

on drools.agent.newInstance property present in the KnowledgeAgentConfiguration object

passed to the agent.

For polling to occur, the polling and notifier services must be started:

Knowledge Agent

33

ResourceFactory.getResourceChangeNotifierService().start();

ResourceFactory.getResourceChangeScannerService().start();

2.3.2.1. Knowledge Agent and Custom ClassLoaders

Because Knowledge Agent could scan and process remote resources, it could ends up failing

when compiling or executing rules, queries, functions, etc. that use classes outside the agent's

classloader. If this is your case, you could take 2 approach: use a custom classloader for agent's

kbuilder or force the agent to use the same classloader that its kbase has.

2.3.2.1.1. Custom ClassLoaders for KnowledgeBuilder

Knowledge Agent uses KnowledgeBuilder internally in order to compile managed resources.

If you need to pass custom configuration to these compilers you could pass a

KnowledgeBuilderConfiguration object to KnowledgeAgentFactory.newKnowledgeAgent(). This

object will be used in every builder the agent creates. Using a KnowledgeBuilderConfiguration

you can specify a custom classloader.

2.3.2.1.2. Reuse KnowledgeBase ClassLoader

Most of the times, the classloader you wan't to use in the compilation process of remote resources

is the same needed in the agent's kbase, so the rules could be executed. If you want to use

this approach, you will need to setup the desired ClassLoader to the agen't kbase and use the

"drools.agent.useKBaseClassLoaderForCompiling" property of KnowledgeAgentConfiguration

object.

This approach lets you modify agent's kbuilder classloader in runtime by modifying the classloader

the agent's kbase uses. This will serve also when not using incremental change set processing

(see the section bellow). When the kbase is recreated its configuration is reused, so the

classloader is maintained.

KnowledgeBaseConfiguration kbaseConfig =

 KnowledgeBaseFactory.newKnowledgeBaseConfiguration(null, customClassLoader);

KnowledgeBase kbase =

 KnowledgeBaseFactory.newKnowledgeBase(kbaseConfig); //kbase with custom classloader

KnowledgeAgentConfiguration aconf =

 KnowledgeAgentFactory.newKnowledgeAgentConfiguration();

aconf.setProperty("drools.agent.newInstance", "false"); //incremental change set processing

 enabled

aconf.setProperty("drools.agent.useKBaseClassLoaderForCompiling", "true");

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent(

 "test agent", kbase, aconf);

Chapter 2. Quick Start

34

2.3.2.2. Incremental Change Set Processing

Knowledge Agent can process change sets in two different ways: recreating the knowledge base

every time a new change set is processed or applying the change set in the cached knowledge

base without destroying it. This behavior is controlled by the "newInstance" property of the

KnowledgeAgentConfiguration object passed to the Agent's constructor.

When "newInstace" is set to true (the default value), the agent will destroy the cached Knowledge

Base it contains and populate a new one containing the change set modifications. When

"newInstance" is set to "false" change sets are applied directly to the cached Knowledge Base.

The rule that were not modified in the change sets' resources are not replaced in the Knowledge

Base, the modified or deleted rules are modified or deleted from the cached Knowledge Base.

Functions, Queries and Definition Types are always replaced in the cached Knowledge Base

whether they are modified or not.

The following code snippet creates a new Knowledge Agent with its "newInstace" property set

to false

KnowledgeAgentConfiguration aconf =

 KnowledgeAgentFactory.newKnowledgeAgentConfiguration();

aconf.setProperty("drools.agent.newInstance", "false");

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent("test agent", null,

 aconf);

2.3.2.3. Remote HTTP resource caching

A note on remote HTTP Url Resources: if your knowledge agent is "pulling" resources from a

http(s) URL, then you might rightly be concerned if that resource (remote web server) suddenly

disappears. To survive a restart when a resource is no longer available remotely (eg the remote

server is being restarted) then you can set a System Property: drools.resource.urlcache to a

directory that has write permissions for the application: the Knowledge Agent will cache copies of

the remote resources in that local directory.

For example, using the java command line: -Ddrools.resource.urlcache=/users/someone/

KnowledgeCache - will keep local copies of the resources (rules, packages etc) in that directory,

for the agent to use should it be restarted (when a remote resource becomes available, and is

updated, it will automatically update the local cache copy).

Chapter 3.

35

Chapter 3. User Guide3.1. Building

Figure 3.1. org.drools.builder

Chapter 3. User Guide

36

3.1.1. Building using Code

The KnowledgeBuilder is responsible for taking source files, such as a DRL file or an Excel file,

and turning them into a Knowledge Package of rule and process definitions which a Knowledge

Base can consume. An object of the class ResourceType indicates the type of resource it is being

asked to build.

The ResourceFactory provides capabilities to load resources from a number of sources, such as

Reader, ClassPath, URL, File, or ByteArray. Binaries, such as decision tables (Excel .xls files),

should not use a Reader based resource handler, which is only suitable for text based resources.

Figure 3.2. KnowledgeBuilder

The KnowlegeBuilder is created using the KnowledgeBuilderFactory.

Building using Code

37

Figure 3.3. KnowledgeBuilderFactory

A KnowledgeBuilder can be created using the default configuration.

Example 3.1. Creating a new KnowledgeBuilder

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

A configuration can be created using the KnowledgeBuilderFactory. This allows the behavior

of the Knowledge Builder to be modified. The most common usage is to provide a custom class

loader so that the KnowledgeBuilder object can resolve classes that are not in the default

classpath. The first parameter is for properties and is optional, i.e., it may be left null, in which

case the default options will be used. The options parameter can be used for things like changing

the dialect or registering new accumulator functions.

Example 3.2. Creating a new KnowledgeBuilder with a custom ClassLoader

KnowledgeBuilderConfiguration kbuilderConf =

 KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration(null, classLoader);

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(kbuilderConf);

Resources of any type can be added iteratively. Below, a DRL file is added. Unlike Drools 4.0

Package Builder, the Knowledge Builder can now handle multiple namespaces, so you can just

keep adding resources regardless of namespace.

Chapter 3. User Guide

38

Example 3.3. Adding DRL Resources

kbuilder.add(ResourceFactory.newFileResource("/project/myrules.drl"),

 ResourceType.DRL);

It is best practice to always check the hasErrors() method after an addition. You

should not add more resources or retrieve the Knowledge Packages if there are errors.

getKnowledgePackages() returns an empty list if there are errors.

Example 3.4. Validating

if(kbuilder.hasErrors()) {

 System.out.println(kbuilder.getErrors());

 return;

}

When all the resources have been added and there are no errors the collection of Knowledge

Packages can be retrieved. It is a Collection because there is one Knowledge Package per

package namespace. These Knowledge Packages are serializable and often used as a unit of

deployment.

Example 3.5. Getting the KnowledgePackages

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

The final example puts it all together.

Example 3.6. Putting it all together

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

if(kbuilder.hasErrors()) {

 System.out.println(kbuilder.getErrors());

 return;

}

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newFileResource("/project/myrules1.drl"),

 ResourceType.DRL);

kbuilder.add(ResourceFactory.newFileResource("/project/myrules2.drl"),

 ResourceType.DRL);

Building using Configuration and the ChangeSet XML

39

if(kbuilder.hasErrors()) {

 System.out.println(kbuilder.getErrors());

 return;

}

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

3.1.2. Building using Configuration and the ChangeSet XML

Instead of adding the resources to create definitions programmatically it is also possible to do it by

configuration, via the ChangeSet XML. The simple XML file supports three elements: add, remove,

and modify, each of which has a sequence of <resource> subelements defining a configuration

entity. The following XML schema is not normative and intended for illustration only.

Example 3.7. XML Schema for ChangeSet XML (not normative)

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://drools.org/drools-5.0/change-set"

 targetNamespace="http://drools.org/drools-5.0/change-set">

 <xs:element name="change-set" type="ChangeSet"/>

 <xs:complexType name="ChangeSet">

 <xs:choice maxOccurs="unbounded">

 <xs:element name="add" type="Operation"/>

 <xs:element name="remove" type="Operation"/>

 <xs:element name="modify" type="Operation"/>

 </xs:choice>

 </xs:complexType>

 <xs:complexType name="Operation">

 <xs:sequence>

 <xs:element name="resource" type="Resource"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Resource">

 <xs:sequence>

 <xs:element name="decisiontable-conf" type="DecTabConf"

 minOccurs="0"/>

Chapter 3. User Guide

40

 </xs:sequence>

 <xs:attribute name="source" type="xs:string"/>

 <xs:attribute name="type" type="ResourceType"/>

 </xs:complexType>

 <xs:complexType name="DecTabConf">

 <xs:attribute name="input-type" type="DecTabInpType"/>

 <xs:attribute name="worksheet-name" type="xs:string"

 use="optional"/>

 </xs:complexType>

 <xs:simpleType name="ResourceType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="DRL"/>

 <xs:enumeration value="XDRL"/>

 <xs:enumeration value="DSL"/>

 <xs:enumeration value="DSLR"/>

 <xs:enumeration value="DRF"/>

 <xs:enumeration value="DTABLE"/>

 <xs:enumeration value="PKG"/>

 <xs:enumeration value="BRL"/>

 <xs:enumeration value="CHANGE_SET"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DecTabInpType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XLS"/>

 <xs:enumeration value="CSV"/>

 </xs:restriction>

 </xs:simpleType>

</xs:schema>

Currently only the add element is supported, but the others will be implemented to support iterative

changes. The following example loads a single DRL file.

Example 3.8. Simple ChangeSet XML

<change-set xmlns='http://drools.org/drools-5.0/change-set'

Building using Configuration and the ChangeSet XML

41

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd http://anonsvn.jboss.org/

repos/labs/labs/jbossrules/trunk/drools-api/src/main/resources/change-set-1.0.0.xsd' >

 <add>

 <resource source='file:/project/myrules.drl' type='DRL' />

 </add>

</change-set>

Notice the file: prefix, which signifies the protocol for the resource. The Change Set supports

all the protocols provided by java.net.URL, such as "file" and "http", as well as an additional

"classpath". Currently the type attribute must always be specified for a resource, as it is not inferred

from the file name extension. Using the ClassPath resource loader in Java allows you to specify

the Class Loader to be used to locate the resource but this is not possible from XML. Instead, the

Class Loader will default to the one used by the Knowledge Builder unless the ChangeSet XML

is itself loaded by the ClassPath resource, in which case it will use the Class Loader specified

for that resource.

Currently you still need to use the API to load that ChangeSet, but we will add support for

containers such as Spring in the future, so that the process of creating a Knowledge Base can be

done completely by XML configuration. Loading resources using an XML file couldn't be simpler,

as it's just another resource type.

Example 3.9. Loading the ChangeSet XML

kbuilder.add(ResourceFactory.newUrlResource(url), ResourceType.CHANGE_SET);

ChangeSets can include any number of resources, and they even support additional configuration

information, which currently is only needed for decision tables. Below, the example is expanded

to load rules from a http URL location, and an Excel decision table from the classpath.

Example 3.10. ChangeSet XML with resource configuration

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd http://anonsvn.jboss.org/

repos/labs/labs/jbossrules/trunk/drools-api/src/main/resources/change-set-1.0.0.xsd' >

 <add>

 <resource source='http:org/domain/myrules.drl' type='DRL' />

 <resource source='classpath:data/IntegrationExampleTest.xls' type="DTABLE">

 <decisiontable-conf input-type="XLS" worksheet-name="Tables_2" />

 </resource>

 </add>

Chapter 3. User Guide

42

 </change-set>

The ChangeSet is especially useful when working with a Knowledge Agent, as it allows for change

notification and automatic rebuilding of the Knowledge Base, which is covered in more detail in

the section on the Knowledge Agent, under Deploying.

Directories can also be specified, to add all resources in that folder. Currently it is expected that

all resources in that folder are of the same type. If you use the Knowledge Agent it will provide a

continous scanning for added, modified or removed resources and rebuild the cached Knowledge

Base. The KnowledgeAgent provides more information on this.

Example 3.11. ChangeSet XML which adds a directory's contents

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd http://anonsvn.jboss.org/

repos/labs/labs/jbossrules/trunk/drools-api/src/main/resources/change-set-1.0.0.xsd' >

 <add>

 <resource source='file:/projects/myproject/myrules' type='DRL' />

 </add>

</change-set>

3.2. Deploying

3.2.1. KnowledgePackage and Knowledge Definitions

A Knowledge Package is a collection of Knowledge Definitions, such as rules and processes. It is

created by the Knowledge Builder, as described in the chapter "Building". Knowledge Packages

are self-contained and serializable, and they currently form the basic deployment unit.

KnowledgeBase

43

Figure 3.4. KnowledgePackage

Knowledge Packages are added to the Knowledge Base. However, a Knowledge Package

instance cannot be reused once it's added to the Knowledge Base. If you need to add it to another

Knowledge Base, try serializing it first and using the "cloned" result. We hope to fix this limitation

in future versions of Drools.

3.2.2. KnowledgeBase

The Knowlege Base is a repository of all the application's knowledge definitions. It may contain

rules, processes, functions, and type models. The Knowledge Base itself does not contain

instance data, known as facts; instead, sessions are created from the Knowledge Base into which

data can be inserted and where process instances may be started. Creating the Knowlege Base

can be heavy, whereas session creation is very light, so it is recommended that Knowledge Bases

be cached where possible to allow for repeated session creation.

Chapter 3. User Guide

44

Figure 3.5. KnowledgeBase

A KnowledgeBase object is also serializable, and some people may prefer to build and then store

a KnowledgeBase, treating it also as a unit of deployment, instead of the Knowledge Packages.

The KnowlegeBase is created using the KnowledgeBaseFactory.

In-Process Building and Deployment

45

Figure 3.6. KnowledgeBaseFactory

A KnowledgeBase can be created using the default configuration.

Example 3.12. Creating a new KnowledgeBase

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

If a custom class loader was used with the KnowledgeBuilder to resolve types not in the default

class loader, then that must also be set on the KnowledgeBase. The technique for this is the same

as with the KnowledgeBuilder.

Example 3.13. Creating a new KnowledgeBase with a custom ClassLoader

KnowledgeBaseConfiguration kbaseConf =

 KnowledgeBaseFactory.createKnowledgeBaseConfiguration(null, cl);

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase(kbaseConf);

3.2.3. In-Process Building and Deployment

This is the simplest form of deployment. It compiles the knowledge definitions and adds them to the

Knowledge Base in the same JVM. This approach requires drools-core.jar and drools-compiler.jar

to be on the classpath.

Chapter 3. User Guide

46

Example 3.14. Add KnowledgePackages to a KnowledgeBase

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

kbase.addKnowledgePackages(kpkgs);

Note that the addKnowledgePackages(kpkgs) method can be called iteratively to add additional

knowledge.

3.2.4. Building and Deployment in Separate Processes

Both the KnowledgeBase and the KnowledgePackage are units of deployment and serializable.

This means you can have one machine do any necessary building, requiring drools-

compiler.jar, and have another machine deploy and execute everything, needing only drools-

core.jar.

Although serialization is standard Java, we present an example of how one machine might write

out the deployment unit and how another machine might read in and use that deployment unit.

Example 3.15. Writing the KnowledgePackage to an OutputStream

ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(fileName));

out.writeObject(kpkgs);

out.close();

Example 3.16. Reading the KnowledgePackage from an InputStream

ObjectInputStream in = new ObjectInputStream(new FileInputStream(fileName));

// The input stream might contain an individual

// package or a collection.

@SuppressWarnings("unchecked")

Collection<KnowledgePackage> kpkgs =

 ()in.readObject(Collection<KnowledgePackage>);

in.close();

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

kbase.addKnowledgePackages(kpkgs);

The KnowledgeBase is also serializable and some people may prefer to build and then store the

KnowledgeBase itself, instead of the Knowledge Packages.

StatefulknowledgeSessions and KnowledgeBase Modifications

47

Drools Guvnor, our server side management system, uses this deployment approach. After

Guvnor has compiled and published serialized Knowledge Packages on a URL, Drools can use

the URL resource type to load them.

3.2.5. StatefulknowledgeSessions and KnowledgeBase

Modifications

Stateful Knowledge Sessions will be discussed in more detail in section "Running". The

KnowledgeBase creates and returns StatefulKnowledgeSession objects, and it may optionally

keep references to those. When KnowledgeBase modifications occur those modifications are

applied against the data in the sessions. This reference is a weak reference and it is also optional,

which is controlled by a boolean flag.

3.2.6. KnowledgeAgent

The KnowlegeAgent provides automatic loading, caching and re-loading of resources and is

configured from a properties files. The Knowledge Agent can update or rebuild this Knowlege

Base as the resources it uses are changed. The strategy for this is determined by the configuration

given to the factory, but it is typically pull-based using regular polling. We hope to add push-based

updates and rebuilds in future versions. The Knowledge Agent will continuously scan all the added

resources, using a default polling interval of 60 seconds. If their date of the last modification is

updated it will rebuild the cached Knowledge Base using the new resources.

Chapter 3. User Guide

48

Figure 3.7. KnowledgeAgent

The KnowlegeBuilder is created using a KnowledgeBuilderFactory object. The agent must

specify a name, which is used in the log files to associate a log entry with the corresponding agent.

Example 3.17. Creating the KnowledgeAgent

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");

KnowledgeAgent

49

Figure 3.8. KnowledgeAgentFactory

The following example constructs an agent that will build a new KnowledgeBase from the specified

ChangeSet. (See section "Building" for more details on the ChangeSet format.) Note that the

method can be called iteratively to add new resources over time. The Knowledge Agent polls

the resources added from the ChangeSet every 60 seconds, the default interval, to see if they

are updated. Whenever changes are found it will construct a new Knowledge Base or apply the

modifications to the existing Knowledge Base according to its configuration. If the change set

specifies a resource that is a directory its contents will be scanned for changes, too.

Example 3.18. Writing the KnowledgePackage to an OutputStream

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");

kagent.applyChangeSet(ResourceFactory.newUrlResource(url));

KnowledgeBase kbase = kagent.getKnowledgeBase();

Resource scanning is not on by default, it's a service and must be started, and the same is true

for notification. Both can be done via the ResourceFactory.

Example 3.19. Starting the Scanning and Notification Services

ResourceFactory.getResourceChangeNotifierService().start();

ResourceFactory.getResourceChangeScannerService().start();

The default resource scanning period may be changed via the ResourceChangeScannerService.

A suitably updated ResourceChangeScannerConfiguration object is passed to the service's

configure() method, which allows for the service to be reconfigured on demand.

Chapter 3. User Guide

50

Example 3.20. Changing the Scanning Intervals

ResourceChangeScannerConfiguration sconf =

 ResourceFactory.getResourceChangeScannerService().newResourceChangeScannerConfiguration();

// Set the disk scanning interval to 30s, default is 60s.

sconf.setProperty("drools.resource.scanner.interval", "30");

ResourceFactory.getResourceChangeScannerService().configure(sconf);

Knowledge Agents can take an empty Knowledge Base or a populated one. If a populated

Knowledge Base is provided, the Knowledge Agent will run an iterator from Knowledge Base

and subscribe to the resources that it finds. While it is possible for the Knowledge Builder to

build all resources found in a directory, that information is lost by the Knowledge Builder so

that those directories will not be continuously scanned. Only directories specified as part of the

applyChangeSet(Resource) method are monitored.

One of the advantages of providing KnowledgeBase as the starting point is that you can

provide it with a KnowledgeBaseConfiguration. When resource changes are detected and a

new KnowledgeBase object is instantiated, it will use the KnowledgeBaseConfiguration of the

previous KnowledgeBase object.

Example 3.21. Using an existing KnowledgeBase

KnowledgeBaseConfiguration kbaseConf =

 KnowledgeBaseFactory.createKnowledgeBaseConfiguration(null, cl);

KnowledgeBase kbase KnowledgeBaseFactory.newKnowledgeBase(kbaseConf);

// Populate kbase with resources here.

KnowledgeAgent kagent =

 KnowledgeAgentFactory.newKnowledgeAgent("MyAgent", kbase);

KnowledgeBase kbase = kagent.getKnowledgeBase();

In the above example getKnowledgeBase() will return the same provided kbase instance until

resource changes are detected and a new Knowledge Base is built. When the new Knowledge

Base is built, it will be done with the KnowledgeBaseConfiguration that was provided to the

previous KnowledgeBase.

As mentioned previously, a ChangeSet XML can specify a directory and all of its contents will

be added. If this ChangeSet XML is used with the applyChangeSet() method it will also add

any directories to the scanning process. When the directory scan detects an additional file, it will

be added to the Knowledge Base; any removed file is removed from the Knowledge Base, and

modified files will be removed from the Knowledge Base.

Running

51

Example 3.22. ChangeSet XML which adds a directories contents

<change-set xmlns='http://drools.org/drools-5.0/change-set'

 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'

 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd' >

 <add>

 <resource source='file:/projects/myproject/myrules' type='PKG' />

 </add>

</change-set>

Note that for the resource type PKG the drools-compiler dependency is not needed as the

Knowledge Agent is able to handle those with just drools-core.

The KnowledgeAgentConfiguration can be used to modify a Knowledge Agent's default

behavior. You could use this to load the resources from a directory, while inhibiting the continuous

scan for changes of that directory.

Example 3.23. Change the Scanning Behavior

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

KnowledgeAgentConfiguration kaconf =

 KnowledgeAgentFactory.newKnowledgeAgentConfiguation();

// Do not scan directories, just files.

kaconf.setProperty("drools.agent.scanDirectories", "false");

KnowledgeAgent kagent =

 KnowledgeAgentFactory.newKnowledgeAgent("test agent", kaconf);

Previously we mentioned Drools Guvnor and how it can build and publish serialized Knowledge

Packages on a URL, and that the ChangeSet XML can handle URLs and Packages. Taken

together, this forms an importanty deployment scenario for the Knowledge Agent.

3.3. Running

3.3.1. KnowledgeBase

The KnowlegeBase is a repository of all the application's knowledge definitions. It will contain rules,

processes, functions, and type models. The Knowledge Base itself does not contain data; instead,

sessions are created from the KnowledgeBase into which data can be inserted and from which

process instances may be started. Creating the KnowlegeBase can be heavy, whereas session

creation is very light, so it is recommended that Knowle Bases be cached where possible to allow

for repeated session creation.

Chapter 3. User Guide

52

Example 3.24. Creating a new KnowledgeBase

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

3.3.2. StatefulKnowledgeSession

The StatefulKnowledgeSession stores and executes on the runtime data. It is created from the

KnowledgeBase.

Figure 3.9. StatefulKnowledgeSession

Example 3.25. Create a StatefulKnowledgeSession from a KnowledgeBase

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

3.3.3. KnowledgeRuntime

3.3.3.1. WorkingMemoryEntryPoint

The WorkingMemoryEntryPoint provides the methods around inserting, updating and retrieving

facts. The term "entry point" is related to the fact that we have multiple partitions in a Working

Memory and you can choose which one you are inserting into, although this use case is aimed at

event processing and covered in more detail in the Fusion manual. Most rule based applications

will work with the default entry point alone.

The KnowledgeRuntime interface provides the main interaction with the engine. It is available

in rule consequences and process actions. In this manual the focus is on the methods and

interfaces related to rules, and the methods pertaining to processes will be ignored for now.

But you'll notice that the KnowledgeRuntime inherits methods from both the WorkingMemory and

the ProcessRuntime, thereby providing a unified API to work with processes and rules. When

KnowledgeRuntime

53

working with rules, three interfaces form the KnowledgeRuntime: WorkingMemoryEntryPoint,

WorkingMemory and the KnowledgeRuntime itself.

Figure 3.10. WorkingMemoryEntryPoint

3.3.3.1.1. Insertion

Insertion is the act of telling the WorkingMemory about a fact, which you do by

ksession.insert(yourObject), for example. When you insert a fact, it is examined for matches

against the rules. This means all of the work for deciding about firing or not firing a rule is done

during insertion; no rule, however, is executed until you call fireAllRules(), which you call after

Chapter 3. User Guide

54

you have finished inserting your facts. It is a common misunderstanding for people to think the

condition evaluation happens when you call fireAllRules(). Expert systems typically use the

term assert or assertion to refer to facts made available to the system. However, due to "assert"

being a keyword in most languages, we have decided to use the insert keyword; so expect to

hear the two used interchangeably.

When an Object is inserted it returns a FactHandle. This FactHandle is the token used to

represent your inserted object within the WorkingMemory. It is also used for interactions with the

WorkingMemory when you wish to retract or modify an object.

Cheese stilton = new Cheese("stilton");

FactHandle stiltonHandle = ksession.insert(stilton);

As mentioned in the Knowledge Base section, a Working Memory may operate in two assertion

modes, i.e., equality or identity, with identity being the default.

Identity means that the Working Memory uses an IdentityHashMap to store all asserted objects.

New instance assertions always result in the return of a new FactHandle, but if an instance is

asserted again then it returns the original fact handle, i.e., it ignores repeated insertions for the

same fact.

Equality means that the Working Memory uses a HashMap to store all asserted Objects. New

instance assertions will only return a new FactHandle if no equal objects have been asserted.

3.3.3.1.2. Retraction

Retraction is the removal of a fact from Working Memory, which means that it will no longer track

and match that fact, and any rules that are activated and dependent on that fact will be cancelled.

Note that it is possible to have rules that depend on the nonexistence of a fact, in which case

retracting a fact may cause a rule to activate. (See the not and exist keywords.) Retraction is

done using the FactHandle that was returned by the insert call.

Cheese stilton = new Cheese("stilton");

FactHandle stiltonHandle = ksession.insert(stilton);

....

ksession.retract(stiltonHandle);

3.3.3.1.3. Update

The Rule Engine must be notified of modified facts, so that they can be reprocessed. Internally,

modification is actually a retract followed by an insert; the Rule Engine removes the fact from

the WorkingMemory and inserts it again. You must use the update() method to notify the

WorkingMemory of changed objects for those objects that are not able to notify the WorkingMemory

themselves. Notice that update() always takes the modified object as a second parameter, which

KnowledgeRuntime

55

allows you to specify new instances for immutable objects. The update() method can only be

used with objects that have shadow proxies turned on. The update method is only available within

Java code. On the right hand side of a rule, also the modify statement is supported, providing

simplified calls to the object's setters.

Cheese stilton = new Cheese("stilton");

FactHandle stiltonHandle = workingMemory.insert(stilton);

...

stilton.setPrice(100);

workingMemory.update(stiltonHandle, stilton);

3.3.3.2. WorkingMemory

The WorkingMemory provides access to the Agenda, permits query executions, and lets you

access named Enty Points.

Figure 3.11. WorkingMemory

Chapter 3. User Guide

56

3.3.3.2.1. Query

Queries are used to retrieve fact sets based on patterns, as they are used in rules. Patterns may

make use of optional parameters. Queries can be defined in the Knowlege Base, from where they

are called up to return the matching results. While iterating over the result collection, any bound

identifier in the query can be accessed using the get(String identifier) method and any FactHandle

for that identifier can be retrieved using getFactHandle(String identifier).

Figure 3.12. QueryResults

KnowledgeRuntime

57

Figure 3.13. QueryResultsRow

Example 3.26. Simple Query Example

QueryResults results =

 ksession.getQueryResults("my query", new Object[] { "string" });

for (QueryResultsRow row : results) {

 System.out.println(row.get("varName"));

}

3.3.3.2.2. Live Querries

Drools has always had query support, but the result was returned as an iterable set; this makes

it hard to monitor changes over time.

We have now complimented this with Live Querries, which has a listener attached instead of

returning an iterable result set. These live querries stay open creating a view and publish change

events for the contents of this view. So now you can execute your query, with parameters and

listen to changes in the resulting view.

Example 3.27. Implementing ViewChangedEventListener

final List updated = new ArrayList();

Chapter 3. User Guide

58

final List removed = new ArrayList();

final List added = new ArrayList();

ViewChangedEventListener listener = new ViewChangedEventListener() {

 public void rowUpdated(Row row) {

 updated.add(row.get("$price"));

 }

 public void rowRemoved(Row row) {

 removed.add(row.get("$price"));

 }

 public void rowAdded(Row row) {

 added.add(row.get("$price"));

 }

};

// Open the LiveQuery

LiveQuery query = ksession.openLiveQuery("cheeses",

 new Object[] { "cheddar", "stilton" },

 listener);

...

...

query.dispose() // make sure you call dispose when you want the query to close

A Drools blog article contains an example of Glazed Lists integration for live queries,

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

3.3.3.3. KnowledgeRuntime

The KnowledgeRuntime provides further methods that are applicable to both rules and processes,

such as setting globals and registering Channels (previously exit points, some references

may remain in docs for a while).

http://blog.athico.com/2010/07/glazed-lists-examples-for-drools-live.html

KnowledgeRuntime

59

Figure 3.14. KnowledgeRuntime

Chapter 3. User Guide

60

3.3.3.3.1. Globals

Globals are named objects that can be passed to the rule engine, without needing to insert them.

Most often these are used for static information, or for services that are used in the RHS of a rule,

or perhaps as a means to return objects from the rule engine. If you use a global on the LHS of

a rule, make sure it is immutable. A global must first be declared in a rules file before it can be

set on the session.

global java.util.List list

With the Knowledge Base now aware of the global identifier and its type, it is now possible

to call ksession.setGlobal() for any session. Failure to declare the global type and

identifier first will result in an exception being thrown. To set the global on the session use

ksession.setGlobal(identifier, value):

List list = new ArrayList();

ksession.setGlobal("list", list);

If a rule evaluates on a global before you set it you will get a NullPointerException.

3.3.3.4. StatefulRuleSession

The StatefulRuleSession is inherited by the StatefulKnowledgeSession and provides the rule

related methods that are relevant from outside of the engine.

Figure 3.15. StatefulRuleSession

Agenda

61

3.3.3.4.1. Agenda Filters

Figure 3.16. AgendaFilters

AgendaFilter objects are optional implementations of the filter interface which are used to allow

or deny the firing of an activation. What you filter on is entirely up to the implementation. Drools

4.0 used to supply some out of the box filters, which have not be exposed in drools 5.0 drools-

api, but they are simple to implement and the Drools 4.0 code base can be referred to.

To use a filter specify it while calling fireAllRules(). The following example permits only rules

ending in the string "Test". All others will be filtered out.

ksession.fireAllRules(new RuleNameEndsWithAgendaFilter("Test"));

3.3.4. Agenda

The Agenda is a Rete feature. During actions on the WorkingMemory, rules may become fully

matched and eligible for execution; a single Working Memory Action can result in multiple eligible

rules. When a rule is fully matched an Activation is created, referencing the rule and the matched

facts, and placed onto the Agenda. The Agenda controls the execution order of these Activations

using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Working Memory Actions. This is where most of the work takes place, either in the

Consequence (the RHS itself) or the main Java application process. Once the Consequence

has finished or the main Java application process calls fireAllRules() the engine switches

to the Agenda Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it

fires the found rule, switching the phase back to Working Memory Actions.

Chapter 3. User Guide

62

Figure 3.17. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling

application. When Working Memory Actions are taking place, no rules are being fired.

Agenda

63

Figure 3.18. Agenda

3.3.4.1. Conflict Resolution

Conflict resolution is required when there are multiple rules on the agenda. (The basics to this are

covered in chapter "Quick Start".) As firing a rule may have side effects on the working memory,

the rule engine needs to know in what order the rules should fire (for instance, firing ruleA may

cause ruleB to be removed from the agenda).

The default conflict resolution strategies employed by Drools are: Salience and LIFO (last in, first

out).

The most visible one is salience (or priority), in which case a user can specify that a certain rule

has a higher priority (by giving it a higher number) than other rules. In that case, the rule with

higher salience will be preferred. LIFO priorities are based on the assigned Working Memory

Action counter value, with all rules created during the same action receiving the same value. The

execution order of a set of firings with the same priority value is arbitrary.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author

the rules without worrying about a "flow".

Drools 4.0 supported custom conflict resolution strategies; while this capability still exists in Drools

it has not yet been exposed to the end user via drools-api in Drools 5.0.

Chapter 3. User Guide

64

3.3.4.2. AgendaGroup

Figure 3.19. AgendaGroup

Agenda groups are a way to partition rules (activations, actually) on the agenda. At any one time,

only one group has "focus" which means that activations for rules in that group only will take effect.

You can also have rules with "auto focus" which means that the focus is taken for its agenda group

when that rule's conditions are true.

Agenda groups are known as "modules" in CLIPS terminology. They provide a handy way to create

a "flow" between grouped rules. You can switch the group which has focus either from within the

rule engine, or via the API. If your rules have a clear need for multiple "phases" or "sequences"

of processing, consider using agenda-groups for this purpose.

Each time setFocus() is called it pushes that Agenda Group onto a stack. When the focus group

is empty it is popped from the stack and the focus group that is now on top evaluates. An Agenda

Group can appear in multiple locations on the stack. The default Agenda Group is "MAIN", with all

rules which do not specify an Agenda Group being in this group. It is also always the first group

on the stack, given focus initially, by default.

ksession.getAgenda().getAgendaGroup("Group A").setFocus();

Agenda

65

3.3.4.3. ActivationGroup

Figure 3.20. ActivationGroup

An activation group is a set of rules bound together by the same "activation-group" rule attribute. In

this group only one rule can fire, and after that rule has fired all the other rules are cancelled from

the agenda. The clear() method can be called at any time, which cancels all of the activations

before one has had a chance to fire.

ksession.getAgenda().getActivationGroup("Group B").clear();

3.3.4.4. RuleFlowGroup

Figure 3.21. RuleFlowGroup

A rule flow group is a group of rules associated by the "ruleflow-group" rule attribute. These

rules can only fire when the group is activate. The group itself can only become active when

Chapter 3. User Guide

66

the elaboration of the ruleflow diagram reaches the node representing the group. Here too, the

clear() method can be called at any time to cancels all activations still remaining on the Agenda.

ksession.getAgenda().getRuleFlowGroup("Group C").clear();

3.3.5. Event Model

The event package provides means to be notified of rule engine events, including rules firing,

objects being asserted, etc. This allows you, for instance, to separate logging and auditing

activities from the main part of your application (and the rules).

The KnowlegeRuntimeEventManager interface is implemented by the KnowledgeRuntime which

provides two interfaces, WorkingMemoryEventManager and ProcessEventManager. We will only

cover the WorkingMemoryEventManager here.

Figure 3.22. KnowledgeRuntimeEventManager

The WorkingMemoryEventManager allows for listeners to be added and removed, so that events

for the working memory and the agenda can be listened to.

Event Model

67

Figure 3.23. WorkingMemoryEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a

session. It will print activations after they have fired.

Example 3.28. Adding an AgendaEventListener

ksession.addEventListener(new DefaultAgendaEventListener() {

 public void afterActivationFired(AfterActivationFiredEvent event) {

 super.afterActivationFired(event);

 System.out.println(event);

 }

});

Drools also provides DebugWorkingMemoryEventListener and DebugAgendaEventListener

which implement each method with a debug print statement. To print all Working Memory events,

you add a listener like this:

Example 3.29. Creating a new KnowledgeBuilder

ksession.addEventListener(new DebugWorkingMemoryEventListener());

All emitted events implement the KnowlegeRuntimeEvent interface which can be used to retrieve

the actual KnowlegeRuntime the event originated from.

Chapter 3. User Guide

68

Figure 3.24. KnowlegeRuntimeEvent

The events currently supported are:

• ActivationCreatedEvent

• ActivationCancelledEvent

• BeforeActivationFiredEvent

• AfterActivationFiredEvent

• AgendaGroupPushedEvent

• AgendaGroupPoppedEvent

• ObjectInsertEvent

• ObjectRetractedEvent

• ObjectUpdatedEvent

• ProcessCompletedEvent

• ProcessNodeLeftEvent

• ProcessNodeTriggeredEvent

• ProcessStartEvent

3.3.6. KnowledgeRuntimeLogger

The KnowledgeRuntimeLogger uses the comprehensive event system in Drools to create an audit

log that can be used to log the execution of an application for later inspection, using tools such

as the Eclipse audit viewer.

StatelessKnowledgeSession

69

Figure 3.25. KnowledgeRuntimeLoggerFactory

Example 3.30. FileLogger

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "logdir/mylogfile");

...

logger.close();

3.3.7. StatelessKnowledgeSession

The StatelessKnowledgeSession wraps the StatefulKnowledgeSession, instead of extending

it. Its main focus is on decision service type scenarios. It avoids the need to call dispose().

Stateless sessions do not support iterative insertions and the method call fireAllRules()

from Java code; the act of calling execute() is a single-shot method that will internally

instantiate a StatefulKnowledgeSession, add all the user data and execute user commands, call

fireAllRules(), and then call dispose(). While the main way to work with this class is via the

BatchExecution (a subinterface of Command) as supported by the CommandExecutor interface,

two convenience methods are provided for when simple object insertion is all that's required. The

CommandExecutor and BatchExecution are talked about in detail in their own section.

Chapter 3. User Guide

70

Figure 3.26. StatelessKnowledgeSession

Our simple example shows a stateless session executing a given collection of Java objects using

the convenience API. It will iterate the collection, inserting each element in turn.

Example 3.31. Simple StatelessKnowledgeSession execution with a

Collection

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newFileSystemResource(fileName), ResourceType.DRL);

if (kbuilder.hasErrors()) {

 System.out.println(kbuilder.getErrors());

} else {

 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

 kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

 StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

 ksession.execute(collection);

}

If this was done as a single Command it would be as follows:

Example 3.32. Simple StatelessKnowledgeSession execution with

InsertElements Command

ksession.execute(CommandFactory.newInsertElements(collection));

If you wanted to insert the collection itself, and the collection's individual elements, then

CommandFactory.newInsert(collection) would do the job.

StatelessKnowledgeSession

71

Methods of the CommandFactory create the supported commands, all of which can be marshalled

using XStream and the BatchExecutionHelper. BatchExecutionHelper provides details on the

XML format as well as how to use Drools Pipeline to automate the marshalling of BatchExecution

and ExecutionResults.

StatelessKnowledgeSession supports globals, scoped in a number of ways. I'll cover the non-

command way first, as commands are scoped to a specific execution call. Globals can be resolved

in three ways.

• The Stateless Knowledge Session method getGlobals() returns a Globals instance which

provides access to the session's globals. These are shared for all execution calls. Exercise

caution regarding mutable globals because execution calls can be executing simultaneously in

different threads.

Example 3.33. Session scoped global

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

// Set a global hbnSession, that can be used for DB interactions in the rules.

ksession.setGlobal("hbnSession", hibernateSession);

// Execute while being able to resolve the "hbnSession" identifier.

ksession.execute(collection);

• Using a delegate is another way of global resolution. Assigning a value to a global (with

setGlobal(String, Object)) results in the value being stored in an internal collection

mapping identifiers to values. Identifiers in this internal collection will have priority over any

supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate

global (if any) will be used.

• The third way of resolving globals is to have execution scoped globals. Here, a Command to set

a global is passed to the CommandExecutor.

The CommandExecutor interface also offers the ability to export data via "out" parameters. Inserted

facts, globals and query results can all be returned.

Example 3.34. Out identifiers

// Set up a list of commands

List cmds = new ArrayList();

cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));

cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));

cmds.add(CommandFactory.newQuery("Get People" "getPeople");

// Execute the list

Chapter 3. User Guide

72

ExecutionResults results =

 ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the ArrayList

results.getValue("list1");

// Retrieve the inserted Person fact

results.getValue("person");

// Retrieve the query as a QueryResults instance.

results.getValue("Get People");

3.3.7.1. Sequential Mode

With Rete you have a stateful session where objects can be asserted and modified over time,

and where rules can also be added and removed. Now what happens if we assume a stateless

session, where after the initial data set no more data can be asserted or modified and rules cannot

be added or removed? Certainly it won't be necessary to re-evaluate rules, and the engine will

be able to operate in a simplified way.

1. Order the Rules by salience and position in the ruleset (by setting a sequence attribute on the

rule terminal node).

2. Create an array, one element for each possible rule activation; element position indicates firing

order.

3. Turn off all node memories, except the right-input Object memory.

4. Disconnect the Left Input Adapter Node propagation, and let the Object plus the Node be

referenced in a Command object, which is added to a list on the Working Memory for later

execution.

5. Assert all objects, and, when all assertions are finished and thus right-input node memories are

populated, check the Command list and execute each in turn.

6. All resulting Activations should be placed in the array, based upon the determined sequence

number of the Rule. Record the first and last populated elements, to reduce the iteration range.

7. Iterate the array of Activations, executing populated element in turn.

8. If we have a maximum number of allowed rule executions, we can exit our network evaluations

early to fire all the rules in the array.

The LeftInputAdapterNode no longer creates a Tuple, adding the Object, and then propagate

the Tuple – instead a Command object is created and added to a list in the Working Memory.

This Command object holds a reference to the LeftInputAdapterNode and the propagated

object. This stops any left-input propagations at insertion time, so that we know that a right-

input propagation will never need to attempt a join with the left-inputs (removing the need for left-

Commands and the CommandExecutor

73

input memory). All nodes have their memory turned off, including the left-input Tuple memory

but excluding the right-input object memory, which means that the only node remembering an

insertion propagation is the right-input object memory. Once all the assertions are finished and all

right-input memories populated, we can then iterate the list of LeftInputAdatperNode Command

objects calling each in turn. They will propagate down the network attempting to join with the right-

input objects, but they won't be remembered in the left input as we know there will be no further

object assertions and thus propagations into the right-input memory.

There is no longer an Agenda, with a priority queue to schedule the Tuples; instead, there is simply

an array for the number of rules. The sequence number of the RuleTerminalNode indicates the

element within the array where to place the Activation. Once all Command objects have finished

we can iterate our array, checking each element in turn, and firing the Activations if they exist. To

improve performance, we remember the first and the last populated cell in the array. The network

is constructed, with each RuleTerminalNode being given a sequence number based on a salience

number and its order of being added to the network.

Typically the right-input node memories are Hash Maps, for fast object retraction; here, as we

know there will be no object retractions, we can use a list when the values of the object are not

indexed. For larger numbers of objects indexed Hash Maps provide a performance increase; if

we know an object type has only a few instances, indexing is probably not advantageous, and

a list can be used.

Sequential mode can only be used with a Stateless Session and is off by default. To turn it on,

either call RuleBaseConfiguration.setSequential(true), or set the rulebase configuration

property drools.sequential to true. Sequential mode can fall back to a dynamic agenda

by calling setSequentialAgenda with SequentialAgenda.DYNAMIC. You may also set the

"drools.sequential.agenda" property to "sequential" or "dynamic".

3.3.8. Commands and the CommandExecutor

Drools has the concept of stateful or stateless sessions. We've already covered stateful sessions,

which use the standard working memory that can be worked with iteratively over time. Stateless

is a one-off execution of a working memory with a provided data set. It may return some results,

with the session being disposed at the end, prohibiting further iterative interactions. You can think

of stateless as treating a rule engine like a function call with optional return results.

In Drools 4 we supported these two paradigms but the way the user interacted with them

was different. StatelessSession used an execute(...) method which would insert a collection of

objects as facts. StatefulSession didn't have this method, and insert used the more traditional

insert(...) method. The other issue was that the StatelessSession did not return any results,

so that users themselves had to map globals to get results, and it wasn't possible to do anything

besides inserting objects; users could not start processes or execute queries.

Drools 5.0 addresses all of these issues and more. The foundation for this is the CommandExecutor

interface, which both the stateful and stateless interfaces extend, creating consistency and

ExecutionResults:

Chapter 3. User Guide

74

Figure 3.27. CommandExecutor

Figure 3.28. ExecutionResults

The CommandFactory allows for commands to be executed on those sessions, the only difference

being that the Stateless Knowledge Session executes fireAllRules() at the end before

disposing the session. The currently supported commands are:

• FireAllRules

• GetGlobal

• SetGlobal

• InsertObject

Commands and the CommandExecutor

75

• InsertElements

• Query

• StartProcess

• BatchExecution

InsertObject will insert a single object, with an optional "out" identifier. InsertElements will

iterate an Iterable, inserting each of the elements. What this means is that a Stateless Knowledge

Session is no longer limited to just inserting objects, it can now start processes or execute queries,

and do this in any order.

Example 3.35. Insert Command

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

ExecutionResults bresults =

 ksession.execute(CommandFactory.newInsert(new Cheese("stilton"), "stilton_id"));

Stilton stilton = bresults.getValue("stilton_id");

The execute method always returns an ExecutionResults instance, which allows access to any

command results if they specify an out identifier such as the "stilton_id" above.

Example 3.36. InsertElements Command

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

Command cmd = CommandFactory.newInsertElements(Arrays.asList(Object[] {

 new Cheese("stilton"),

 new Cheese("brie"),

 new Cheese("cheddar"),

 });

ExecutionResults bresults = ksession.execute(cmd);

The execute method only allows for a single command. That's where BatchExecution comes

in, which represents a composite command, created from a list of commands. Now, execute will

iterate over the list and execute each command in turn. This means you can insert some objects,

start a process, call fireAllRules and execute a query, all in a single execute(...) call, which

is quite powerful.

As mentioned previosly, the Stateless Knowledge Session will execute fireAllRules()

automatically at the end. However the keen-eyed reader probably has already noticed the

FireAllRules command and wondered how that works with a StatelessKnowledgeSession. The

FireAllRules command is allowed, and using it will disable the automatic execution at the end;

think of using it as a sort of manual override function.

Chapter 3. User Guide

76

Commands support out identifiers. Any command that has an out identifier set on it will add its

results to the returned ExecutionResults instance. Let's look at a simple example to see how this

works.

Example 3.37. BatchExecution Command

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

List cmds = new ArrayList();

cmds.add(CommandFactory.newInsertObject(new Cheese("stilton", 1), "stilton"));

cmds.add(CommandFactory.newStartProcess("process cheeses"));

cmds.add(CommandFactory.newQuery("cheeses"));

ExecutionResults bresults = ksession.execute(CommandFactory.newBatchExecution(cmds));

Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults qresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the

ExecutionResults. The query command defaults to use the same identifier as the query name,

but it can also be mapped to a different identifier.

A custom XStream marshaller can be used with the Drools Pipeline to achieve XML scripting,

which is perfect for services. Here are two simple XML samples, one for the BatchExecution and

one for the ExecutionResults.

Example 3.38. Simple BatchExecution XML

<batch-execution>

 <insert out-identifier='outStilton'>

 <org.drools.Cheese>

 <type>stilton</type>

 <price>25</price>

 <oldPrice>0</oldPrice>

 </org.drools.Cheese>

 </insert>

</batch-execution>

Example 3.39. Simple ExecutionResults XML

<execution-results>

 <result identifier='outStilton'>

 <org.drools.Cheese>

 <type>stilton</type>

Commands and the CommandExecutor

77

 <oldPrice>25</oldPrice>

 <price>30</price>

 </org.drools.Cheese>

 </result>

</execution-results>

Spring and Camel, covered in the integrations book, facilitate declarative services.

Example 3.40. BatchExecution Marshalled to XML

<batch-execution>

 <insert out-identifier="stilton">

 <org.drools.Cheese>

 <type>stilton</type>

 <price>1</price>

 <oldPrice>0</oldPrice>

 </org.drools.Cheese>

 </insert>

 <query out-identifier='cheeses2' name='cheesesWithParams'>

 <string>stilton</string>

 <string>cheddar</string>

 </query>

</batch-execution>

The CommandExecutor returns an ExecutionResults, and this is handled by the pipeline code

snippet as well. A similar output for the <batch-execution> XML sample above would be:

Example 3.41. ExecutionResults Marshalled to XML

<execution-results>

 <result identifier="stilton">

 <org.drools.Cheese>

 <type>stilton</type>

 <price>2</price>

 </org.drools.Cheese>

 </result>

 <result identifier='cheeses2'>

 <query-results>

 <identifiers>

 <identifier>cheese</identifier>

 </identifiers>

 <row>

Chapter 3. User Guide

78

 <org.drools.Cheese>

 <type>cheddar</type>

 <price>2</price>

 <oldPrice>0</oldPrice>

 </org.drools.Cheese>

 </row>

 <row>

 <org.drools.Cheese>

 <type>cheddar</type>

 <price>1</price>

 <oldPrice>0</oldPrice>

 </org.drools.Cheese>

 </row>

 </query-results>

 </result>

</execution-results>

The BatchExecutionHelper provides a configured XStream instance to support the marshalling

of Batch Executions, where the resulting XML can be used as a message format, as shown above.

Configured converters only exist for the commands supported via the Command Factory. The

user may add other converters for their user objects. This is very useful for scripting stateless or

stateful knowledge sessions, especially when services are involved.

There is currently no XML schema to support schema validation. The basic format is

outlined here, and the drools-transformer-xstream module has an illustrative unit test in the

XStreamBatchExecutionTest unit test. The root element is <batch-execution> and it can contain

zero or more commands elements.

Example 3.42. Root XML element

<batch-execution>

...

</batch-execution>

This contains a list of elements that represent commands, the supported commands is limited

to those Commands provided by the Command Factory. The most basic of these is the <insert>

element, which inserts objects. The contents of the insert element is the user object, as dictated

by XStream.

Example 3.43. Insert

<batch-execution>

Commands and the CommandExecutor

79

 <insert>

 ...<!-- any user object -->

 </insert>

</batch-execution>

The insert element features an "out-identifier" attribute, demanding that the inserted object will

also be returned as part of the result payload.

Example 3.44. Insert with Out Identifier Command

<batch-execution>

 <insert out-identifier='userVar'>

 ...

 </insert>

</batch-execution>

It's also possible to insert a collection of objects using the <insert-elements> element. This

command does not support an out-identifier. The org.domain.UserClass is just an illustrative

user object that XStream would serialize.

Example 3.45. Insert Elements command

<batch-execution>

 <insert-elements>

 <org.domain.UserClass>

 ...

 </org.domain.UserClass>

 <org.domain.UserClass>

 ...

 </org.domain.UserClass>

 <org.domain.UserClass>

 ...

 </org.domain.UserClass>

 </insert-elements>

</batch-execution>

Next, there is the <set-global> element, which sets a global for the session.

Example 3.46. Insert Elements command

<batch-execution>

Chapter 3. User Guide

80

 <set-global identifier='userVar'>

 <org.domain.UserClass>

 ...

 </org.domain.UserClass>

 </set-global>

</batch-execution>

<set-global> also supports two other optional attributes, out and out-identifier. A true value

for the boolean out will add the global to the <batch-execution-results> payload, using the

name from the identifier attribute. out-identifier works like out but additionally allows you

to override the identifier used in the <batch-execution-results> payload.

Example 3.47. Set Global Command

<batch-execution>

 <set-global identifier='userVar1' out='true'>

 <org.domain.UserClass>

 ...

 </org.domain.UserClass>

 </set-global>

 <set-global identifier='userVar2' out-identifier='alternativeUserVar2'>

 <org.domain.UserClass>

 ...

 </org.domain.UserClass>

 </set-global>

</batch-execution>

There is also a <get-global> element, without contents, with just an out-identifier attribute.

(There is no need for an out attribute because retrieving the value is the sole purpose of a <get-

global> element.

Example 3.48. Get Global Command

<batch-execution>

 <get-global identifier='userVar1' />

 <get-global identifier='userVar2' out-identifier='alternativeUserVar2'/>

</batch-execution>

While the out attribute is useful in returning specific instances as a result payload, we often wish to

run actual queries. Both parameter and parameterless queries are supported. The name attribute

Commands and the CommandExecutor

81

is the name of the query to be called, and the out-identifier is the identifier to be used for the

query results in the <execution-results> payload.

Example 3.49. Query Command

<batch-execution>

 <query out-identifier='cheeses' name='cheeses'/>

 <query out-identifier='cheeses2' name='cheesesWithParams'>

 <string>stilton</string>

 <string>cheddar</string>

 </query>

</batch-execution>

The <start-process> command accepts optional parameters. Other process related methods

will be added later, like interacting with work items.

Example 3.50. Start Process Command

<batch-execution>

 <startProcess processId='org.drools.actions'>

 <parameter identifier='person'>

 <org.drools.TestVariable>

 <name>John Doe</name>

 </org.drools.TestVariable>

 </parameter>

 </startProcess>

</batch-execution

Example 3.51. Signal Event Command

<signal-event process-instance-id='1' event-type='MyEvent'>

 <string>MyValue</string>

</signal-event>

Example 3.52. Complete Work Item Command

<complete-work-item id='" + workItem.getId() + "' >

 <result identifier='Result'>

 <string>SomeOtherString</string>

 </result>

Chapter 3. User Guide

82

</complete-work-item>

Example 3.53. Abort Work Item Command

<abort-work-item id='21' />

Support for more commands will be added over time.

3.3.9. Marshalling

The MarshallerFactory is used to marshal and unmarshal Stateful Knowledge Sessions.

Figure 3.29. MarshallerFactory

At the simplest the MarshallerFactory can be used as follows:

Example 3.54. Simple Marshaller Example

// ksession is the StatefulKnowledgeSession

// kbase is the KnowledgeBase

ByteArrayOutputStream baos = new ByteArrayOutputStream();

Marshaller marshaller = MarshallerFactory.newMarshaller(kbase);

marshaller.marshall(baos, ksession);

baos.close();

However, with marshalling you need more flexibility when dealing with referenced

user data. To achieve this we have the ObjectMarshallingStrategy interface.

Marshalling

83

Two implementations are provided, but users can implement their own. The two

supplied strategies are IdentityMarshallingStrategy and SerializeMarshallingStrategy.

SerializeMarshallingStrategy is the default, as used in the example above, and it just calls the

Serializable or Externalizable methods on a user instance. IdentityMarshallingStrategy

instead creates an integer id for each user object and stores them in a Map, while the id is written to

the stream. When unmarshalling it accesses the IdentityMarshallingStrategy map to retrieve

the instance. This means that if you use the IdentityMarshallingStrategy, it is stateful for the

life of the Marshaller instance and will create ids and keep references to all objects that it attempts

to marshal. Below is he code to use an Identity Marshalling Strategy.

Example 3.55. IdentityMarshallingStrategy

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ObjectMarshallingStrategy oms = MarshallerFactory.newIdentityMarshallingStrategy()

Marshaller marshaller =

 MarshallerFactory.newMarshaller(kbase, new ObjectMarshallingStrategy[]{ oms });

marshaller.marshall(baos, ksession);

baos.close();

For added flexability we can't assume that a single strategy is suitable. Therefore we have added

the ObjectMarshallingStrategyAcceptor interface that each Object Marshalling Strategy

contains. The Marshaller has a chain of strategies, and when it attempts to read or write a user

object it iterates the strategies asking if they accept responsability for marshalling the user object.

One of the provided implementations is ClassFilterAcceptor. This allows strings and wild cards

to be used to match class names. The default is "*.*", so in the above example the Identity

Marshalling Strategy is used which has a default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use

identity lookup, we could do the following:

Example 3.56. IdentityMarshallingStrategy with Acceptor

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ObjectMarshallingStrategyAcceptor identityAcceptor =

 MarshallerFactory.newClassFilterAcceptor(new String[] { "org.domain.pkg1.*" });

ObjectMarshallingStrategy identityStrategy =

 MarshallerFactory.newIdentityMarshallingStrategy(identityAcceptor);

ObjectMarshallingStrategy sms = MarshallerFactory.newSerializeMarshallingStrategy();

Marshaller marshaller =

 MarshallerFactory.newMarshaller(kbase,

 new ObjectMarshallingStrategy[]{ identityStrategy, sms });

marshaller.marshall(baos, ksession);

Chapter 3. User Guide

84

baos.close();

Note that the acceptance checking order is in the natural order of the supplied array.

3.3.10. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.

You will need to have some implementation of the Java Transaction API (JTA) installed. For

development purposes we recommend the Bitronix Transaction Manager, as it's simple to set up

and works embedded, but for production use JBoss Transactions is recommended.

Example 3.57. Simple example using transactions

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY,

 Persistence.createEntityManagerFactory("emf-name"));

env.set(EnvironmentName.TRANSACTION_MANAGER,

 TransactionManagerServices.getTransactionManager());

// KnowledgeSessionConfiguration may be null, and a default will be used

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

int sessionId = ksession.getId();

UserTransaction ut =

 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");

ut.begin();

ksession.insert(data1);

ksession.insert(data2);

ksession.startProcess("process1");

ut.commit();

To use a JPA, the Environment must be set with both the EntityManagerFactory and the

TransactionManager. If rollback occurs the ksession state is also rolled back, so you can continue

to use it after a rollback. To load a previously persisted Stateful Knowledge Session you'll need

the id, as shown below:

Example 3.58. Loading a StatefulKnowledgeSession

StatefulKnowledgeSession ksession =

 JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env);

Persistence and Transactions

85

To enable persistence several classes must be added to your persistence.xml, as in the example

below:

Example 3.59. Configuring JPA

<persistence-unit name="org.drools.persistence.jpa" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/BitronixJTADataSource</jta-data-source>

 <class>org.drools.persistence.session.SessionInfo</class>

 <class>org.drools.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.processinstance.ProcessInstanceEventInfo</class>

 <class>org.drools.persistence.processinstance.WorkItemInfo</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update" />

 <property name="hibernate.show_sql" value="true" />

 <property name="hibernate.transaction.manager_lookup_class"

 value="org.hibernate.transaction.BTMTransactionManagerLookup" />

 </properties>

</persistence-unit>

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways

of doing this, and its documentation should be contsulted for details. For a quick start, here is the

programmatic approach:

Example 3.60. Configuring JTA DataSource

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/BitronixJTADataSource");

ds.setClassName("org.h2.jdbcx.JdbcDataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:mem:mydb");

ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it add a

jndi.properties file to your META-INF and add the following line to it:

Chapter 3. User Guide

86

Example 3.61. JNDI properties

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

3.3.11. Drools Clips

Drools Clips is an alpha level research project to provide a Clips like front end ot Drools.

Deftemplates are working, the knowledge base handles multiple name spaces and you can attach

the knoweldge base to the session for interative building, to provide a more "shell" like environment

suitable for Clips.

• deftemplate

• defrule

• deffunction

• and/or/not/exists/test conditional elements

• Literal, Variable, Return Value and Predicate field constarints

Drools Clips

87

This project is very early stages and in need of love. If you want to help, open up eclipse import api,

core, compiler and clips and you should be good to go. The unit tests should be self explanatory.

88

Chapter 4.

89

Chapter 4. The Rule Language

4.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports

natural and domain specific languages via "expanders" that allow the language to morph to your

problem domain. This chapter is mostly concerted with this native rule format. The diagrams used

to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the

language terms. The technically very keen may also refer to DRL.g which is the Antlr3 grammar

for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with

content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure

for you.

4.1.1. A rule file

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries

and functions, as well as some resource declarations like imports, globals and attributes that

are assigned and used by your rules and queries. However, you are also able to spread your

rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -

spreading rules across files can help with managing large numbers of rules. A DRL file is simply

a text file.

The overall structure of a rule file is:

Example 4.1. Rules file

package package-name

imports

globals

functions

queries

rules

The order in which the elements are declared is not important, except for the package name that,

if declared, must be the first element in the rules file. All elements are optional, so you will use

only those you need. We will discuss each of them in the following sections.

Chapter 4. The Rule Language

90

4.1.2. What makes a rule

For the inpatients, just as an early view, a rule has the following rough structure:

rule "name"

 attributes

 when

 LHS

 then

 RHS

end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are

optional, as are newlines. Attributes are simple (always optional) hints to how the rule should

behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered

below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific

languages, where lines are processed one by one and spaces may be significant to the domain

language.

4.2. Keywords

Note

(updated to Drools 5.0)

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,

properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

• true

• false

• accumulate

• collect

• from

• null

Keywords

91

• over

• then

• when

Soft keywords are just recognized in their context, enabling you to use these words in any other

place you wish. Here is a list of the soft keywords:

• lock-on-active

• date-effective

• date-expires

• no-loop

• auto-focus

• activation-group

• agenda-group

• ruleflow-group

• entry-point

• duration

• package

• import

• dialect

• salience

• enabled

• attributes

• rule

• extend

• template

• query

• declare

• function

Chapter 4. The Rule Language

92

• global

• eval

• not

• in

• or

• and

• exists

• forall

• action

• reverse

• result

• end

• init

Of course, you can have these (hard and soft) words as part of a method name in camel case,

like notSomething() or accumulateSomething() - there are no issues with that scenario.

Another improvement of the DRL language is the ability to escape hard keywords on rule text. This

feature enables you to use your existing domain objects without worrying about keyword collision.

To escape a word, simply enclose it in grave accents, like this:

Holiday(`when` == "july")

The escape should be used everywehere in rule text, except within code expressions in the LHS

or RHS code block. Here are examples of proper usage:

rule "validate holiday by eval"

dialect "mvel"

when

 h1 : Holiday()

 eval(h1.when == "july")

then

 System.out.println(h1.name + ":" + h1.when);

end

Comments

93

rule "validate holiday"

dialect "mvel"

when

 h1 : Holiday(`when` == "july")

then

 System.out.println(h1.name + ":" + h1.when);

end

4.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when

they are encountered, except inside semantic code blocks, like the RHS of a rule.

4.3.1. Single line comment

Figure 4.1. Single line comment

To create single line comments, you can use either '#' or '//'. The parser will ignore anything in

the line after the comment symbol. Example:

rule "Testing Comments"

when

 # this is a single line comment

 // this is also a single line comment

 eval(true) # this is a comment in the same line of a pattern

then

 // this is a comment inside a semantic code block

 # this is another comment in a semantic code block

end

4.3.2. Multi-line comment

Figure 4.2. Multi-line comment

Chapter 4. The Rule Language

94

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.

Example:

rule "Test Multi-line Comments"

when

 /* this is a multi-line comment

 in the left hand side of a rule */

 eval(true)

then

 /* and this is a multi-line comment

 in the right hand side of a rule */

end

4.4. Error Messages

Note

(updated to Drools 5.0)

Drools 5 introduces standardized error messages. This standardization aims to help users to find

and resolve problems in a easier and faster way. In this section you will learn how to identify and

interpret those error messages, and you will also receive some tips on how to solve the problems

associated with them.

4.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use

the following example:

Figure 4.3. Error Message Format

1st Block: This area identifies the error code.

2nd Block: Line and column information.

3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where

the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.

Error Messages Description

95

4.4.2. Error Messages Description

4.4.2.1. 101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify

an alternative. Here are some examples:

Example 4.2.

1: rule one

2: when

3: exists Foo()

4: exits Bar()

5: then

6: end

The above example generates this message:

• [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next

example:

Example 4.3.

1: package org.drools;

2: rule

3: when

4: Object()

5: then

6: System.out.println("A RHS");

7: end

Now the above code generates this message:

• [ERR 101] Line 3:2 no viable alternative at input 'WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but

it's in the wrong place since the the rule name is missing.

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a

sample of a lexical problem:

Chapter 4. The Rule Language

96

Example 4.4.

1: rule simple_rule

2: when

3: Student(name == "Andy)

4: then

5: end

The above code misses to close the quotes and because of this the parser generates this error

message:

• [ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule simple_rule in pattern Student

Tip

Usually the Line and Column information are accurate, but in some cases (like

unclosed quotes), the parser generates a 0:-1 position. In this case you should

check whether you didn't forget to close quotes, apostrophes or parentheses.

4.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn’t #nd at the

current input position. Here are some samples:

Example 4.5.

1: rule simple_rule

2: when

3: foo3 : Bar(

The above example generates this message:

• [ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule simple_rule in pattern Bar

To fix this problem, it is necessary to complete the rule statement.

Tip

Usually when you get a 0:-1 position, it means that parser reached the end of

source.

Error Messages Description

97

The following code generates more than one error message:

Example 4.6.

1: package org.drools;

2:

3: rule "Avoid NPE on wrong syntax"

4: when

5: not(Cheese((type == "stilton", price == 10) || (type == "brie", price == 15)) from $cheeseList)

6: then

7: System.out.println("OK");

8: end

These are the errors associated with this source:

• [ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule "Avoid NPE on wrong syntax" in

pattern Cheese

• [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"

• [ERR 102] Line 5:106 mismatched input ')' expecting 'then' in rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (',') by AND

operator ('&&').

Tip

In some situations you can get more than one error message. Try to fix one

by one, starting at the first one. Some error messages are generated merely as

consequences of other errors.

4.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to

identify soft keywords. This sample shows exactly this situation:

Example 4.7.

 1: package nesting;

 2: dialect "mvel"

 3:

 4: import org.drools.Person

Chapter 4. The Rule Language

98

 5: import org.drools.Address

 6:

 7: fdsfdsfds

 8:

 9: rule "test something"

10: when

11: p: Person(name=="Michael")

12: then

13: p.name = "other";

14: System.out.println(p.name);

15: end

With this sample, we get this error message:

• [ERR 103] Line 7:0 rule 'rule_key' failed predicate:

{(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn’t identify it as the soft keyword rule.

Tip

This error is very similar to 102: Mismatched input, but usually involves soft

keywords.

4.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with

a semicolon. Check this example:

Example 4.8.

1: rule simple_rule

2: when

3: eval(abc();)

4: then

5: end

Due to the trailing semicolon within eval, we get this error message:

• [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.

Other Messages

99

4.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,

but the subrule did not match anything. Simply put: the parser has entered a branch from where

there is no way out. This example illustrates it:

Example 4.9.

1: template test_error

2: aa s 11;

3: end

This is the message associated to the above sample:

• [ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'aa' in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type

which might begin a new template slot nor a possible start for any other rule file construct.

4.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development

team.

4.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The

package members are typically related to each other - perhaps HR rules, for instance. A package

represents a namespace, which ideally is kept unique for a given grouping of rules. The package

name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package

configuration that all the rules are kept under (when the rules are assembled). Although, it is not

possible to merge into the same package resources declared under different names. A single

Rulebase may, however, contain multiple packages built on it. A common structure is to have

all the rules for a package in the same file as the package declaration (so that is it entirely self-

contained).

The following railroad diagram shows all the components that may make up a package. Note that

a package must have a namespace and be declared using standard Java conventions for package

names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,

they can appear in any order in the rule file, with the exception of the package statement, which

must be at the top of the file. In all cases, the semicolons are optional.

Chapter 4. The Rule Language

100

Figure 4.4. package

Notice that any rule atttribute (as described the section Rule Attributes) may also be written at

package level, superseding the attribute's default value. The modified default may still be replaced

by an attribute setting within a rule.

4.5.1. import

Figure 4.5. import

Import statements work like import statements in Java. You need to specify the fully qualified paths

and type names for any objects you want to use in the rules. Drools automatically imports classes

from the Java package of the same name, and also from the package java.lang.

4.5.2. global

Figure 4.6. global

global

101

With global you define global variables. They are used to make application objects available

to the rules. Typically, they are used to provide data or services that the rules use, especially

application services used in rule consequences, and to return data from the rules, like logs or

values added in rule consequences, or for the rules to interact with the application, doing callbacks.

Globals are not inserted into the Working Memory, and therefore a global should never be used to

establish conditions in rules except when it has a constant immutable value. The engine cannot be

notified about value changes of globals and does not track their changes. Incorrect use of globals

in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and

all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

global java.util.List myGlobalList;

rule "Using a global"

when

 eval(true)

then

 myGlobalList.add("Hello World");

end

2. Set the global value on your working memory. It is a best practice to set all global values before

asserting any fact to the working memory. Example:

List list = new ArrayList();

WorkingMemory wm = rulebase.newStatefulSession();

wm.setGlobal("myGlobalList", list);

Note that these are just named instances of objects that you pass in from your application to

the working memory. This means you can pass in any object you want: you could pass in a

service locator, or perhaps a service itself. With the new from element it is now common to pass

a Hibernate session as a global, to allow from to pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the

rule engine, you obtain your emailService object, and then set it in the working memory. In the

DRL, you declare that you have a global of type EmailService, and give it the name "email". Then

in your rule consequences, you can use things like email.sendSMS(number, message).

Chapter 4. The Rule Language

102

Globals are not designed to share data between rules and they should never be used for that

purpose. Rules always reason and react to the working memory state, so if you want to pass data

from rule to rule, assert the data as facts into the working memory.

It is strongly discouraged to set or change a global value from inside your rules. We recommend

to you always set the value from your application using the working memory interface.

4.6. Function

Figure 4.7. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java

classes. They can't do anything more than what you can do with helper classes. (In fact, the

compiler generates the helper class for you behind the scenes.) The main advantage of using

functions in a rule is that you can keep the logic all in one place, and you can change the functions

as needed (which can be a good or a bad thing). Functions are most useful for invoking actions

on the consequence (then) part of a rule, especially if that particular action is used over and over

again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String name) {

 return "Hello "+name+"!";

}

Note that the function keyword is used, even though its not really part of Java. Parameters to

the function are defined as for a method, and you don't have to have parameters if they are not

needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo.hello(). Drools supports

the use of function imports, so all you would need to do is:

Type Declaration

103

import function my.package.Foo.hello

Irrespective of the way the function is defined or imported, you use a function by calling it by its

name, in the consequence or inside a semantic code block. Example:

rule "using a static function"

when

 eval(true)

then

 System.out.println(hello("Bob"));

end

4.7. Type Declaration

Figure 4.8. meta_data

Chapter 4. The Rule Language

104

Figure 4.9. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,

and to allow the declaration of metadata for types.

• Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,

however, users may want to define the model directly to the rules engine, without worrying about

creating models in a lower level language like Java. At other times, there is a domain model

already built, but eventually the user wants or needs to complement this model with additional

entities that are used mainly during the reasoning process.

• Declaring metadata: facts may have meta information associated to them. Examples of meta

information include any kind of data that is not represented by the fact attributes and is consistent

among all instances of that fact type. This meta information may be queried at runtime by the

engine and used in the reasoning process.

4.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword declare, followed by the list of

fields, and the keyword end.

Declaring New Types

105

Example 4.10. Declaring a new fact type: Address

declare Address

 number : int

 streetName : String

 city : String

end

The previous example declares a new fact type called Address. This fact type will have three

attributes: number, streetName and city. Each attribute has a type that can be any valid Java

type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Person:

Example 4.11. declaring a new fact type: Person

declare Person

 name : String

 dateOfBirth : java.util.Date

 address : Address

end

As we can see on the previous example, dateOfBirth is of type java.util.Date, from the Java

API, while address is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using

the import clause, as previously discussed.

Example 4.12. Avoiding the need to use fully qualified class names by using

import

import java.util.Date

declare Person

 name : String

 dateOfBirth : Date

 address : Address

end

Chapter 4. The Rule Language

106

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements

a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean

mapping of the type definition. So, for the previous example, the generated Java class would be:

Example 4.13. generated Java class for the previous Person fact type

declaration

public class Person implements Serializable {

 private String name;

 private java.util.Date dateOfBirth;

 private Address address;

 // getters and setters

 // equals/hashCode

 // toString

}

Since the generated class is a simple Java class, it can be used transparently in the rules, like

any other fact.

Example 4.14. Using the declared types in rules

rule "Using a declared Type"

when

 $p : Person(name == "Bob")

then

 // Insert Mark, who is Bob's mate.

 Person mark = new Person();

 mark.setName("Mark");

 insert(mark);

end

4.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes

and rules. Drools uses the at sign ('@') to introduce metadata, and it always uses the form:

@metadata_key(metadata_value)

The parenthesized metadata_value is optional.

Declaring Metadata for Existing Types

107

For instance, if you want to declare a metadata attribute like author, whose value is Bob, you

could simply write:

Example 4.15. Declaring a metadata attribute

@author(Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special

meaning to the engine, while others are simply available for querying at runtime. Drools allows the

declaration of metadata both for fact types and for fact attributes. Any metadata that is declared

before the fields of a fact type are assigned to the fact type, while metadata declared after an

attribute are assigned to that particular attribute.

Example 4.16. Declaring metadata attributes for fact types and attributes

import java.util.Date

declare Person

 @author(Bob)

 @dateOfCreation(01-Feb-2009)

 name : String @key @maxLength(30)

 dateOfBirth : Date

 address : Address

end

In the previous example, there are two metadata items declared for the fact type (@author and

@dateOfCreation) and two more defined for the name attribute (@key and @maxLength). Please

note that the @key metadata has no value, and so the parentheses and the value were omitted.

4.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when

declaring metadata attributes for new fact types. The only difference is that there are no fields

in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata

for it, it's possible to write the following code:

Example 4.17. Declaring metadata for an existing type

import org.drools.examples.Person

Chapter 4. The Rule Language

108

declare Person

 @author(Bob)

 @dateOfCreation(01-Feb-2009)

end

Instead of using the import, it is also possible to reference the class by its fully qualified name,

but since the class will also be referenced in the rules, it is usually shorter to add the import and

use the short class name everywhere.

Example 4.18. Declaring metadata using the fully qualified class name

declare org.drools.examples.Person

 @author(Bob)

 @dateOfCreation(01-Feb-2009)

end

4.7.4. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the

model between rules and applications. Although, sometimes, the application may need to access

and handle facts from the declared types, especially when the application is wrapping the rules

engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,

as we know, that usually requires a lot of work for small results. Therefore, Drools provides a

simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package

where it was declared. So, for instance, in the example below, Person will belong to the

org.drools.examples package, and so the fully qualified name of the generated class will be

org.drools.examples.Person.

Example 4.19. Declaring a type in the org.drools.examples package

package org.drools.examples

import java.util.Date

declare Person

 name : String

 dateOfBirth : Date

 address : Address

Accessing Declared Types from the Application Code

109

end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,

the application will only have access to them at application run time. Therefore, these classes are

not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the

application code: org.drools.definition.type.FactType. Through this interface, the user can

instantiate, read and write fields in the declared fact types.

Example 4.20. Handling declared fact types through the API

// get a reference to a knowledge base with a declared type:

KnowledgeBase kbase = ...

// get the declared FactType

FactType personType = kbase.getFactType("org.drools.examples",

 "Person");

// handle the type as necessary:

// create instances:

Object bob = personType.newInstance();

// set attributes values

personType.set(bob,

 "name",

 "Bob");

personType.set(bob,

 "age",

 42);

// insert fact into a session

StatefulKnowledgeSession ksession = ...

ksession.insert(bob);

ksession.fireAllRules();

// read attributes

String name = personType.get(bob, "name");

int age = personType.get(bob, "age");

The API also includes other helpful methods, like setting all the attributes at once, reading values

from a Map, or reading all attributes at once, into a Map.

Chapter 4. The Rule Language

110

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection

underneath, relying on much more performant accessors implemented in generated bytecode.

4.8. Rule

Figure 4.10. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side

(LHS), then do what is specified as a list of actions in the Right Hand Side (RHS). A common

question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"

is normally part of a procedural execution flow, where, at a specific point in time, a condition is

to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific

evaluation sequence or point in time, but that it happens continually, at any time during the life

time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same

DRL it produces an error while loading. If you add a DRL that includes a rule name already in the

package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be

enclosd in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows

the then keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules

cannot be nested.

Rule Attributes

111

Example 4.21. Rule Syntax Overview

rule "<name>"

 <attribute>*

when

 <conditional element>*

then

 <action>*

end

Example 4.22. A simple rule

rule "Approve if not rejected"

 salience -100

 agenda-group "approval"

 when

 not Rejection()

 p : Policy(approved == false, policyState:status)

 exists Driver(age > 25)

 Process(status == policyState)

 then

 log("APPROVED: due to no objections.");

 p.setApproved(true);

end

4.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite

simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools

you should make sure you have a proper understanding of each attribute.

Chapter 4. The Rule Language

112

Figure 4.11. rule attributes

no-loop

default value: false

type: Boolean

When the rule's consequence modifies a fact it may cause the Rule to activate again, causing

recursion. Setting no-loop to true means the attempt to create the Activation for the current

set of data will be ignored.

ruleflow-group

default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that

are assembled by the same ruleflow-group identifier fire only when their group is active.

Rule Attributes

113

lock-on-active

default value: false

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule

within that group that has lock-on-active set to true will not be activated any more; irrespective

of the origin of the update, the activation of a matching rule is discarded. This is a stronger

version of no-loop, because the change could now be caused not only by the rule itself. It's

ideal for calculation rules where you have a number of rules that modify a fact and you don't

want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or

the agenda-group loses the focus those rules with lock-on-active set to true become eligible

again for their activations to be placed onto the agenda.

salience

default value : 0

type : integer

Each rule has a salience attribute that can be assigned an integer number, which defaults to

zero and can be negative or positive. Salience is a form of priority where rules with higher

salience values are given higher priority when ordered in the Activation queue.

agenda-group

default value: MAIN

type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only

rules in the agenda group that has acquired the focus are allowed to fire.

auto-focus

default value: false

type: Boolean

When a rule is activated where the auto-focus value is true and the rule's agenda group

does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activation-group

default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will

only fire exclusively. In other words, the first rule in an activation-group to fire will cancel the

other rules' activations, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear

people mention Xor group; just swap that term in your mind with activation-group.

Chapter 4. The Rule Language

114

dialect

default value: as specified by the package

type: String

possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS

code block. Currently two dialects are available, Java and MVEL. While the dialect can be

specified at the package level, this attribute allows the package definition to be overridden

for a rule.

date-effective

default value: N/A

type: String, containing a date and time definition

A rule can only activate if the current date and time is after date-effective attribute.

date-expires

default value: N/A

type: String, containing a date and time definition

A rule cannot activate if the current date and time is after the date-expires attribute.

duration

default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

Example 4.23. Some attribute examples

rule "my rule"

 salience 42

 agenda-group "number 1"

 when ...

4.8.2. Timers and Calendars

Rule's now suport both interval and cron based timers, which replace the now deprecated duration

attribute.

Example 4.24. Sample timer attribute uses

timer (int: <initial delay> <repeat interval>?)

Timers and Calendars

115

timer (int: 30s)

timer (int: 30s 5m)

timer (cron: <cron expression>)

timer (cron:* 0/15 * * * ?)

Interval "int:" timers follow the JDK semantics for initial delay optionally followed by a repeat

interval. Cron "cron:" timers follow standard cron expressions:

Example 4.25. A Cron Example

rule "Send SMS every 15 minutes"

 timer (cron:* 0/15 * * * ?)

when

 $a : Alarm(on == true)

then

 channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on");

end

Calendars can now controll when rules can fire. The Calendar api is modelled on Quartz http://

www.quartz-scheduler.org/ [http://www.quartz-scheduler.org/] :

Example 4.26. Adapting a Quartz Calendar

Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)

Calendars are registered with the StatefulKnowledgeSession:

Example 4.27. Registering a Calendar

ksession.getCalendars().set("week day", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule calendar

attribute can have one or more comma calendar names.

Example 4.28. Using Calendars and Timers together

rule "weekdays are high priority"

 calendars "weekday"

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Chapter 4. The Rule Language

116

 timer (int:0 1h)

when

 Alarm()

then

 send("priority high - we have an alarm#);

end

rule "weekend are low priority"

 calendars "weekend"

 timer (int:0 4h)

when

 Alarm()

then

 send("priority low - we have an alarm#);

end

4.8.3. Left Hand Side (when) Conditional Elements

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of

zero or more Conditional Elements. If the LHS is left empty, it is re-written as eval(true), which

means that the rule's condition is always true. It will be activated, once, when a new Working

Memory session is created.

Figure 4.12. Left Hand Side

Example 4.29. Rule without a Conditional Element

rule "no CEs"

when

then

 <action>*

end

The above rule is internally rewritten as:

rule "eval(true)"

when

 eval(true)

then

 <action>*

Left Hand Side (when) Conditional Elements

117

end

Conditional elements work on one or more patterns (which are described below). The most

common one is and, which is implicit when you have multiple patterns in the LHS of a rule that

are not connected in any way. Note that an and cannot have a leading declaration binding like or.

This is obvious, since a declaration can only reference a single fact, and when the and is satisfied

it matches more than one fact - so which fact would the declaration bind to?

4.8.3.1. Pattern

The pattern element is the most important Conditional Element. The entity relationship diagram

below provides an overview of the various parts that make up the pattern's constraints and how

they work together; each is then covered in more detail with railroad diagrams and examples.

Chapter 4. The Rule Language

118

Figure 4.13. Pattern Entity Relationship Diagram

Left Hand Side (when) Conditional Elements

119

At the top of the ER diagram you can see that the pattern consists of zero or more constraints and

has an optional pattern binding. The railroad diagram below shows the syntax for this.

Figure 4.14. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In

the following case the type is Cheese, which means that the pattern will match against all Cheese

objects in the Working Memory.

Notice that the type need not be the actual class of some fact object. Patterns may refer to

superclasses or even interfaces, thereby potentially matching facts from many different classes.

Example 4.30. Simple Pattern

Cheese()

For referring to the matched object, use a pattern binding variable such as $c. The prefixed dollar

symbol ('$') is optional; it can be useful in complex rules where it helps to more easily differentiate

between variables and fields.

Example 4.31. Pattern with a binding variable

$c : Cheese()

Inside of the pattern parenthesis is where all the action happens. A constraint can be either a

Field Constraint, Inline Eval, or a Constraint Group. Constraints can be separated by the following

symbols: ',', '&&' or '||'.

Figure 4.15. Constraints

Chapter 4. The Rule Language

120

Figure 4.16. Constraint

Figure 4.17. constraintGroup

The comma character (',') is used to separate constraint groups. It has implicit and connective

semantics.

Example 4.32. Constraint Group connective ','

Cheese type is stilton and price < 10 and age is mature.

Cheese(type == "stilton", price < 10, age == "mature")

The above example has three constraint groups, each with a single constraint:

• Group 1 - type == "stilton" requires that the type is stilton.

• Group 2 - price < 10 demands a price less than 10.

• Group 3 - age == "mature" accepts only mature cheese.

The '&&' (and) and '||' (or) constraint connectives allow constraint groups to have multiple

constraints. Example:

Example 4.33. && and || Constraint Connectives

// Cheese type is "stilton" and price < 10, and age is mature

Cheese(type == "stilton" && price < 10, age == "mature")

// Cheese type is "stilton" or price < 10, and age is mature

Cheese(type == "stilton" || price < 10, age == "mature")

The above example has two constraint groups. The first has two constraints and the second has

one constraint.

Left Hand Side (when) Conditional Elements

121

The connectives are evaluated in the following order, from first to last:

1. &&

2. ||

3. ,

It is possible to change the evaluation priority by using parentheses, as in any logic or

mathematical expression. Example:

Example 4.34. Using parentheses to change evaluation priority

Cheese type is stilton and (price is less than 20 or age is mature).

Cheese(type == "stilton" && (price < 20 || age == "mature"))

In the above example, the use of parentheses evaluates the connective '||' before the connective

'&&'.

Also, it is important to note that besides having the same semantics, the connectives '&&' and ',' are

resolved with different priorities, and ',' cannot be embedded in a composite constraint expression.

Example 4.35. Not Equivalent connectives

// invalid as ',' cannot be embedded in an expression:

Cheese((type == "stilton", price < 10) || age == "mature")

// valid as '&&' can be embedded in an expression:

Cheese((type == "stilton" && price < 10) || age == "mature")

4.8.3.1.1. Field Constraints

A Field constraint specifies a restriction to be used on a named field; the field name can have an

optional variable binding.

Figure 4.18. fieldConstraint

There are three types of restrictions: Single Value Restriction, Compound Value Restriction, and

Multi Restriction.

Chapter 4. The Rule Language

122

Figure 4.19. restriction

4.8.3.1.1.1. JavaBeans as facts

A field is derived from an accessible method of the object. If your model objects follow the Java

Bean pattern, then fields are exposed using "getXXX" or "isXXX" methods, where these methods

take no arguments, and return something. Within patterns, fields can be accessed using the bean

naming convention, so that "getType" would be accessed as "type". Drools uses the standard JDK

Introspector class to do this mapping.

For example, referring to our Cheese class, the pattern Cheese(type == "brie") applies the

getType() method to a Cheese instance. If a field name cannot be found, the compiler will resort

to using the name as a method without arguments. Thus, the method toString() is called due

to a constraint Cheese(toString == "cheddar"). In this case, you use the full name of the

method with correct capitalization, but still without parentheses. Do please make sure that you are

accessing methods that take no parameters, and that are in fact accessors which don't change

the state of the object in a way that may effect the rules. Remember that the rule engine effectively

caches the results of its matching in between invocations to make it faster.

4.8.3.1.1.2. Values

The field constraints can take a number of values; including literal, qualifiedIdentifier (enum),

variable and returnValue.

Figure 4.20. literal

Left Hand Side (when) Conditional Elements

123

Figure 4.21. qualifiedIdentifier

Figure 4.22. variable

Figure 4.23. returnValue

You can do checks against fields that are or may be null, using '==' and '!=' as you would expect,

and the literal null keyword, as in Cheese(type != null), where the evaluator will not throw an

exception and return true if the value is null. Type coercion is always attempted if the field and the

value are of different types; exceptions will be thrown if a bad coercion is attempted. For instance,

if "ten" is provided as a string in a numeric evaluator, an exception is thrown, whereas "10" would

coerce to a numeric 10. Coercion is always in favor of the field type and not the value type.

4.8.3.1.1.3. Single Value Restriction

Figure 4.24. singleValueRestriction

A Single Value Restriction is a binary relation, applying a binary operator to the field value and

another value, which may be a literal, a variable, a parenthesized expression ("return value"), or

a qualified identifier, i.e., an enum constant.

4.8.3.1.1.3.1. Operators

Figure 4.25. Operators

Chapter 4. The Rule Language

124

The operators '==' and '!=' are valid for all types. Other relational operatory may be used whenever

the type values are ordered; for date fields, '<' means "before". The pair matches and not matches

is only applicable to string fields, contains and not contains require the field to be of some

Collection type. Coercion to the correct value for the evaluator and the field will be attempted, as

mentioned in the "Values" section.

The Operator matches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string

literal, but variables that resolve to a valid regexp are also allowed. It is important to note that,

different from Java, within regular expressions written as string literals you don't need to escape

'\'. Example:

Example 4.36. Regular Expression Constraint

Cheese(type matches "(Buffalo)?\S*Mozarella")

The Operator not matches

The operator returns true if the string does not match the regular expression. The same rules

apply as for the matches operator. Example:

Example 4.37. Regular Expression Constraint

Cheese(type not matches "(Buffulo)?\S*Mozarella")

The Operator contains

The operator contains is used to check whether a field that is a Collection or array contains the

specified value.

Example 4.38. Contains with Collections

CheeseCounter(cheeses contains "stilton") // contains with a String literal

CheeseCounter(cheeses contains $var) // contains with a variable

The Operator not contains

The operator not contains is used to check whether a field that is a Collection or array does

not contain the specified value.

Left Hand Side (when) Conditional Elements

125

Example 4.39. Literal Constraint with Collections

CheeseCounter(cheeses not contains "cheddar") // not contains with a String literal

CheeseCounter(cheeses not contains $var) // not contains with a variable

Note

For backward compatibility, the excludes operator is supported

as a synonym for not contains.

The Operator memberOf

The operator memberOf is used to check whether a field is a member of a collection or array; that

collection must be a variable.

Example 4.40. Literal Constraint with Collections

CheeseCounter(cheese memberOf $matureCheeses)

The Operator not memberOf

The operator not memberOf is used to check whether a field is not a member of a collection or

array; that collection must be a variable.

Example 4.41. Literal Constraint with Collections

CheeseCounter(cheese not memberOf $matureCheeses)

The Operator soundslike

This operator is similar to matches, but it checks whether a word has almost the same sound

(using English pronounciation) as the given value. This is based on the Soundex algorithm (see

http://en.wikipedia.org/wiki/Soundex).

Example 4.42. Test with soundslike

// match cheese "fubar" or "foobar"

Cheese(name soundslike 'foobar')

Chapter 4. The Rule Language

126

4.8.3.1.1.3.2. Literal Restrictions

Literal restrictions are the simplest form of restrictions and evaluate a field against a specified

literal, which may be numeric or a date, a string or a boolean.

Figure 4.26. literalRestriction

Literal Restrictions using the operator '==' provide for faster execution as we can index using

hashing to improve performance.

Numeric

All standard Java numeric primitives are supported.

Example 4.43. Numeric Literal Restriction

Cheese(quantity == 5)

Date

The date format "dd-mmm-yyyy" is supported by default. You can customize this by providing an

alternative date format mask as the System property named drools.dateformat. If more control

is required, use the inline-eval constraint.

Example 4.44. Date Literal Restriction

Cheese(bestBefore < "27-Oct-2009")

String

Any valid Java String is allowed.

Example 4.45. String Literal Restriction

Cheese(type == "stilton")

Boolean

Only true or false can be used; 0 and 1 are not acceptable. A boolean field alone (as in

Cheese(smelly) is not permitted; you must compare this to a boolean literal.

Left Hand Side (when) Conditional Elements

127

Example 4.46. Boolean Literal Restriction

Cheese(smelly == true)

Qualified Identifier

Enums can be used as well, both JDK 1.4 and 5 style enums are supported. For the latter you

must be executing on a JDK 5 environment.

Example 4.47. Boolean Literal Restriction

Cheese(smelly == SomeClass.TRUE)

4.8.3.1.1.3.3. Bound Variable Restriction

Figure 4.27. variableRestriction

Variables can be bound to facts and their fields and then used in subsequent Field Constraints.

A bound variable is called a Declaration. Valid operators are determined by the type of the field

being constrained; coercion will be attempted where possible. Bound Variable Restrictions using

the operator '==' provide for very fast execution as we can use hashing to improve performance.

Example 4.48. Bound Field using the operator '=='

Person(likes : favouriteCheese)

Cheese(type == likes)

Here, likes is the variable that is bound in its declaration to the field favouriteCheese of any

matching Person instance. It is then used to constrain the type of Cheese in the following pattern.

Any valid Java variable name can be used, and it may be prefixed with a '$', which you will often

see used to help differentiate declarations from fields. The example below shows a declaration

for $stilton, bound to the object matching the first pattern and used with a contains operator.

- Note the optional use of '$'.

Example 4.49. Bound Fact using 'contains' operator

$stilton : Cheese(type == "stilton")

Chapter 4. The Rule Language

128

Cheesery(cheeses contains $stilton)

4.8.3.1.1.3.4. Return Value Restriction

Figure 4.28. returnValueRestriction

A Return Value restriction is a parenthesized expression composed from literals, any valid Java

primitive or object, previously bound variables, function calls, and operators. Functions used in a

Return Value must return results that do not depend on time.

Example 4.50. Return Value Restriction

Person(girlAge : age, sex == "F")

Person(age == (girlAge + 2)), sex == 'M')

4.8.3.1.1.4. Compound Value Restriction

The compound value restriction is used where there is more than one possible value to match.

Currently only the in and not in evaluators support this. The second operand of this operator

must be a comma-separated list of values, enclosed in parentheses. Values may be given as

variables, literals, return values or qualified identifiers. Both evaluators are actually "syntactic

sugar", internally rewritten as a list of multiple restrictions using the operators '!=' and '=='.

Figure 4.29. compoundValueRestriction

Left Hand Side (when) Conditional Elements

129

Example 4.51. Compound Restriction using "in"

Person($cheese : favouriteCheese)

Cheese(type in ("stilton", "cheddar", $cheese)

4.8.3.1.1.5. Multi Restriction

Multi restriction allows you to place more than one restriction on a field using the restriction

connectives '&&' or '||'. Grouping via parentheses is permitted, resulting in a recursive syntax

pattern.

Figure 4.30. multiRestriction

Figure 4.31. restrictionGroup

Example 4.52. Multi Restriction

// Simple multi restriction using a single &&

Person(age > 30 && < 40)

// Complex multi restriction using groupings of multi restrictions

Person(age ((> 30 && < 40) ||

 (> 20 && < 25)))

// Mixing muti restrictions with constraint connectives

Person(age > 30 && < 40 || location == "london")

4.8.3.1.2. Inline Eval Constraints

Figure 4.32. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive

boolean. The expression must be constant over time. Any previously bound variable, from the

Chapter 4. The Rule Language

130

current or previous pattern, can be used; autovivification is also used to auto-create field binding

variables. When an identifier is found that is not a current variable, the builder looks to see if the

identifier is a field on the current object type, if it is, the field binding is auto-created as a variable

of the same name. This is called autovivification of field variables inside of inline evals.

This example will find all male-female pairs where the male is 2 years older than the female; the

variable age is auto-created in the second pattern by the autovivification process.

Example 4.53. Return Value operator

Person(girlAge : age, sex = "F")

Person(eval(age == girlAge + 2), sex = 'M')

4.8.3.1.3. Nested Accessors

Drools permits nested accessors in in the field constraints using the MVEL accessor graph

notation. Field constraints involving nested accessors are actually re-written as an MVEL dialect

inline-eval. Care should be taken when using nested accessors as the Working Memory is not

aware of any of the nested values, and does not know when they change; they should be

considered immutable while any of their parent references are inserted into the Working Memory.

If you wish to modify a nested value you should remove the parent objects first and re-assert

afterwards. If you only have a single parent at the root of the graph, when in the MVEL dialect, you

can use the modify construct and its block setters to write the nested accessor assignments while

retracting and inserting the the root parent object as required. Nested accessors can be used on

either side of the operator symbol.

Example 4.54. Nested Accessors

// Find a pet older than its owners first-born child

$p : Person()

Pet(owner == $p, age > $p.children[0].age)

This is internally rewriten as an MVEL inline eval:

// Find a pet older than its owners first-born child

$p : Person()

Pet(owner == $p, eval(age > $p.children[0].age))

Note: Nested accessors have a much greater performance cost than direct field accesses, so

use them carefully.

Left Hand Side (when) Conditional Elements

131

4.8.3.2. Conditional Element and

The Conditional Element and is used to group other Conditional Elements into a logical

conjunction. The root element of the LHS is an implicit prefix and and doesn't need to be specified.

Drools supports both prefix and and infix and, but prefix is the preferred option as its implicit

grouping avoids confusion.

Figure 4.33. prefixAnd

Example 4.55. prefixAnd

(and Cheese(cheeseType : type)

 Person(favouriteCheese == cheeseType))

Example 4.56. implicit root prefixAnd

when

 Cheese(cheeseType : type)

 Person(favouriteCheese == cheeseType)

Infix and is supported along with explicit grouping with parentheses, should it be needed. The

symbol '&&', as an alternative to and, is deprecated although it is still supported in the syntax for

legacy support reasons.

Figure 4.34. infixAnd

Example 4.57. infixAnd

//infixAnd

Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)

//infixAnd with grouping

(Cheese(cheeseType : type) and

 (Person(favouriteCheese == cheeseType) or

Chapter 4. The Rule Language

132

 Person(favouriteCheese == cheeseType))

4.8.3.3. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.

Drools supports both prefix or and infix or, but prefix is the preferred option as its implicit grouping

avoids confusion. The behavior of the Conditional Element or is different from the connective '||'

for constraints and restrictions in field constraints. The engine actually has no understanding of

the Conditional Element or; instead, via a number of different logic transformations, a rule with

or is rewritten as a number of subrules. This process ultimately results in a rule that has a single

or as the root node and one subrule for each of its CEs. Each subrule can activate and fire like

any normal rule; there is no special behavior or interaction between these subrules. - This can be

most confusing to new rule authors.

Figure 4.35. prefixOr

Example 4.58. prefixOr

(or Person(sex == "f", age > 60)

 Person(sex == "m", age > 65)

Infix or is supported along with explicit grouping with parentheses, should it be needed. The

symbol '||', as an alternative to or, is deprecated although it is still supported in the syntax for

legacy support reasons.

Figure 4.36. infixOr

Example 4.59. infixOr

//infixOr

Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)

//infixOr with grouping

(Cheese(cheeseType : type) or

 (Person(favouriteCheese == cheeseType) and

Left Hand Side (when) Conditional Elements

133

 Person(favouriteCheese == cheeseType))

The Conditional Element or also allows for optional pattern binding. This means that each resulting

subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using

eponymous variables:

Example 4.60. or with binding

(or pensioner : Person(sex == "f", age > 60)

 pensioner : Person(sex == "m", age > 65))

Since the conditional element or results in multiple subrule generation, one for each possible

logically outcome, the example above would result in the internal generation of two rules. These

two rules work independently within the Working Memory, which means both can match, activate

and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more

similar rules. When you think of it that way, it's clear that for a single rule there could be multiple

activations if two or more terms of the disjunction are true.

4.8.3.4. Conditional Element eval

Figure 4.37. eval

The CE eval is essentially a catch-all which allows any semantic code (that returns a primitive

boolean) to be executed. This code can refer to variables that were bound in the LHS of the rule,

and functions in the rule package. Overuse of eval reduces the declarativeness of your rules and

can result in a poorly performing engine. While eval can be used anywhere in the patterns, the

best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes

them ideal for being used when functions return values that change over time, which is not allowed

within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are

equivalent to binding a variable to an appropriate type, and then using it in an eval node.

Example 4.61. eval

p1 : Parameter()

p2 : Parameter()

eval(p1.getList().containsKey(p2.getItem()))

Chapter 4. The Rule Language

134

// call function isValid in the LHS

eval(isValid(p1, p2))

4.8.3.5. Conditional Element not

Figure 4.38. not

The CE not is first order logic's non-existential quantifier and checks for the non-existence of

something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not be followed by parentheses around the CEs that it applies to. In the simplest

case of a single pattern (like below) you may optionally omit the parentheses.

Example 4.62. No Busses

not Bus()

Example 4.63. No red Busses

// Brackets are optional:

not Bus(color == "red")

// Brackets are optional:

not (Bus(color == "red", number == 42))

// "not" with nested infix and - two patterns,

// brackets are requires:

not (Bus(color == "red") and

 Bus(color == "blue"))

4.8.3.6. Conditional Element exists

Figure 4.39. exists

The CE exists is first order logic's existential quantifier and checks for the existence of something

in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from

Left Hand Side (when) Conditional Elements

135

just having the pattern on its own, which is more like saying "for each one of...". If you use exists

with a pattern, the rule will only activate at most once, regardless of how much data there is in

working memory that matches the condition inside of the exists pattern. Since only the existence

matters, no bindings will be established.

The keyword exists must be followed by parentheses around the CEs that it applies to. In the

simplest case of a single pattern (like below) you may optionally omit the parentheses.

Example 4.64. At least one Bus

exists Bus()

Example 4.65. At least one red Bus

exists Bus(color == "red")

// brackets are optional:

exists (Bus(color == "red", number == 42))

// "exists" with nested infix and,

// brackets are required:

exists (Bus(color == "red") and

 Bus(color == "blue"))

4.8.3.7. Conditional Element forall

Figure 4.40. forall

The Conditional Element forall completes the First Order Logic support in Drools. The

Conditional Element forall evaluates to true when all facts that match the first pattern match all

the remaining patterns. Example:

rule "All English buses are red"

when

 forall($bus : Bus(type == 'english')

 Bus(this == $bus, color = 'red'))

then

 # all english buses are red

end

Chapter 4. The Rule Language

136

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that

matches this pattern we evaluate the following patterns and if they match, the forall CE will

evaluate to true.

To state that all facts of a given type in the working memory must match a set of constraints,

forall can be written with a single pattern for simplicity. Example:

Example 4.66. Single Pattern Forall

rule "All Buses are Red"

when

 forall(Bus(color == 'red'))

then

 # all asserted Bus facts are red

end

Another example shows multiple patterns inside the forall:

Example 4.67. Multi-Pattern Forall

rule "all employees have health and dental care programs"

when

 forall($emp : Employee()

 HealthCare(employee == $emp)

 DentalCare(employee == $emp)

)

then

 # all employees have health and dental care

end

Forall can be nested inside other CEs for complete expressiveness. For instance, forall can be

used inside a not CE. Note that only single patterns have optional parentheses, so that with a

nested forall parentheses must be used:

Example 4.68. Combining Forall with Not CE

rule "not all employees have health and dental care"

when

 not (forall($emp : Employee()

 HealthCare(employee == $emp)

 DentalCare(employee == $emp))

)

Left Hand Side (when) Conditional Elements

137

then

 # not all employees have health and dental care

end

As a side note, not(forall(p1 p2 p3...)) is equivalent to writing:

not(p1 and not(and p2 p3...))

Also, it is important to note that forall is a scope delimiter. Therefore, it can use any previously

bound variable, but no variable bound inside it will be available for use outside of it.

4.8.3.8. Conditional Element from

Figure 4.41. from

The Conditional Element from enables users to specify an arbitrary source for data to be matched

by LHS patterns. This allows the engine to reason over data not in the Working Memory. The

data source could be a sub-field on a bound variable or the results of a method call. It is a

powerful construction that allows out of the box integration with other application components

and frameworks. One common example is the integration with data retrieved on-demand from

databases using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL

syntax. Therefore, it allows you to easily use object property navigation, execute method calls and

access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zipcode"

when

 Person($personAddress : address)

 Address(zipcode == "23920W") from $personAddress

then

 # zip code is ok

end

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this

problem many ways. This is the same but shows how you can use a graph notation with the 'from':

rule "validate zipcode"

Chapter 4. The Rule Language

138

when

 $p : Person()

 $a : Address(zipcode == "23920W") from $p.address

then

 # zip code is ok

end

Previous examples were evaluations using a single pattern. The CE from also support object

sources that return a collection of objects. In that case, from will iterate over all objects in the

collection and try to match each of them individually. For instance, if we want a rule that applies

10% discount to each item in an order, we could do:

rule "apply 10% discount to all items over US$ 100,00 in an order"

when

 $order : Order()

 $item : OrderItem(value > 100) from $order.items

then

 # apply discount to $item

end

The above example will cause the rule to fire once for each item whose value is greater than 100

for each given order.

You must take caution, however, when using from, especially in conjunction with the lock-on-

active rule attribute as it may produce unexpected results. Consider the example provided earlier,

but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $p : Person()

 $a : Address(state == "NC") from $p.address

then

 modify ($p) {} #Assign person to sales region 1 in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $p : Person()

Left Hand Side (when) Conditional Elements

139

 $a : Address(city == "Raleigh") from $p.address

then

 modify ($p) {} #Apply discount to person in a modify block

end

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive

a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only

the second rule fires.

If you were to turn on the audit log, you would also see that when the second rule fires, it

deactivates the first rule. Since the rule attribute lock-on-active prevents a rule from creating

new activations when a set of facts change, the first rule fails to reactivate. Though the set of facts

have not changed, the use of from returns a new fact for all intents and purposes each time it

is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules

across different rule-flow groups. When rules modify working memory and other rules downstream

of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of modify is

critical. You don't, however, want other rules in the same rule-flow group to place activations on

one another recursively. In this case, the no-loop attribute is ineffective, as it would only prevent

a rule from activating itself recursively. Hence, you resort to lock-on-active.

There are several ways to address this issue:

• Avoid the use of from when you can assert all facts into working memory or use nested object

references in your constraint expressions (shown below).

• Place the variable assigned used in the modify block as the last sentence in your condition

(LHS).

• Avoid the use of lock-on-active when you can explicitly manage how rules within the same

rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of from when you can assert all your facts into working

memory directly. In the example above, both the Person and Address instance can be asserted

into working memory. In this case, because the graph is fairly simple, an even easier solution is

to modify your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $p : Person(address.state == "NC")

then

 modify ($p) {} #Assign person to sales region 1 in a modify block

end

Chapter 4. The Rule Language

140

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $p : Person(address.city == "Raleigh")

then

 modify ($p) {} #Apply discount to person in a modify block

end

Now, you will find that both rules fire as expected. However, it is not always possible to access

nested facts as above. Consider an example where a Person holds one or more Addresses and

you wish to use an existential quantifier to match people with at least one address that meets

certain conditions. In this case, you would have to resort to the use of from to reason over the

collection.

There are several ways to use from to achieve this and not all of them exhibit an issue with the use

of lock-on-active. For example, the following use of from causes both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"

lock-on-active true

when

 $p : Person($addresses : addresses)

 exists (Address(state == "NC") from $addresses)

then

 modify ($p) {} #Assign person to sales region 1 in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $p : Person($addresses : addresses)

 exists (Address(city == "Raleigh") from $addresses)

then

 modify ($p) {} #Apply discount to person in a modify block

end

However, the following slightly different approach does exhibit the problem:

rule "Assign people in North Carolina (NC) to sales region 1"

Left Hand Side (when) Conditional Elements

141

ruleflow-group "test"

lock-on-active true

when

 $assessment : Assessment()

 $p : Person()

 $addresses : List() from $p.addresses

 exists (Address(state == "NC") from $addresses)

then

 modify ($assessment) {} #Modify assessment in a modify block

end

rule "Apply a discount to people in the city of Raleigh"

ruleflow-group "test"

lock-on-active true

when

 $assessment : Assessment()

 $p : Person()

 $addresses : List() from $p.addresses

 exists (Address(city == "Raleigh") from $addresses)

then

 modify ($assessment) {} #Modify assessment in a modify block

end

In the above example, the $addresses variable is returned from the use of from. The example

also introduces a new object, assessment, to highlight one possible solution in this case. If the

$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,

both rules fire as expected.

Though the above examples demonstrate how to combine the use of from with lock-on-active

where no loss of rule activations occurs, they carry the drawback of placing a dependency on the

order of conditions on the LHS. In addition, the solutions present greater complexity for the rule

author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses

may be asserted into working memory and the use of from would not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we

need to find other solutions. Another option is to reevaluate the need for lock-on-active. An

alternative to lock-on-active is to directly manage how rules within the same rule-flow group

activate one another by including conditions in each rule that prevent rules from activating each

other recursively when working memory is modified. For example, in the case above where a

discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether

the discount has already been applied. If so, the rule does not activate.

Chapter 4. The Rule Language

142

4.8.3.9. Conditional Element collect

Figure 4.42. collect

The Conditional Element collect allows rules to reason over a collection of objects obtained

from the given source or from the working memory. In First Oder Logic terms this is the cardinality

quantifier. A simple example:

import java.util.ArrayList

rule "Raise priority if system has more than 3 pending alarms"

when

 $system : System()

 $alarms : ArrayList(size >= 3)

 from collect(Alarm(system == $system, status == 'pending'))

then

 # Raise priority, because system $system has

 # 3 or more alarms pending. The pending alarms

 # are $alarms.

end

In the above example, the rule will look for all pending alarms in the working memory for each

given system and group them in ArrayLists. If 3 or more alarms are found for a given system,

the rule will fire.

The result pattern of collect can be any concrete class that implements the

java.util.Collection interface and provides a default no-arg public constructor. This means

that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as

long as it implements the java.util.Collection interface and provide a default no-arg public

constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the collect CE are in the scope of both source and result patterns

and therefore you can use them to constrain both your source and result patterns. But note that

Left Hand Side (when) Conditional Elements

143

collect is a scope delimiter for bindings, so that any binding made inside of it is not available

for use outside of it.

Collect accepts nested from CEs. The following example is a valid use of "collect":

import java.util.LinkedList;

rule "Send a message to all mothers"

when

 $town : Town(name == 'Paris')

 $mothers : LinkedList()

 from collect(Person(gender == 'F', children > 0)

 from $town.getPeople()

)

then

 # send a message to all mothers

end

4.8.3.10. Conditional Element accumulate

Figure 4.43. accumulate

The Conditional Element accumulate is a more flexible and powerful form of collect, the sense

that it can be used to do what collect does and also achieve things that the CE collect is not

capable of doing. Basically, what it does is that it allows a rule to iterate over a collection of objects,

executing custom actions for each of the elements, and at the end it returns a result object.

Chapter 4. The Rule Language

144

The general syntax of the accumulate CE is:

<result pattern> from accumulate(<source pattern>,

 init(<init code>),

 action(<action code>),

 reverse(<reverse code>),

 result(<result expression>))

The meaning of each of the elements is the following:

• <source pattern>: the source pattern is a regular pattern that the engine will try to match against

each of the source objects.

• <init code>: this is a semantic block of code in the selected dialect that will be executed once

for each tuple, before iterating over the source objects.

• <action code>: this is a semantic block of code in the selected dialect that will be executed for

each of the source objects.

• <reverse code>: this is an optional semantic block of code in the selected dialect that if present

will be executed for each source object that no longer matches the source pattern. The objective

of this code block is to undo any calculation done in the <action code> block, so that the engine

can do decremental calculation when a source object is modified or retracted, hugely improving

performance of these operations.

• <result expression>: this is a semantic expression in the selected dialect that is executed after

all source objects are iterated.

• <result pattern>: this is a regular pattern that the engine tries to match against the object

returned from the <result expression>. If it matches, the accumulate conditional element

evaluates to true and the engine proceeds with the evaluation of the next CE in the rule. If it

does not matches, the accumulate CE evaluates to false and the engine stops evaluating CEs

for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% discount to orders over US$ 100,00"

when

 $order : Order()

 $total : Number(doubleValue > 100)

 from accumulate(OrderItem(order == $order, $value : value),

 init(double total = 0;),

 action(total += $value;),

 reverse(total -= $value;),

Left Hand Side (when) Conditional Elements

145

 result(total))

then

 # apply discount to $order

end

In the above example, for each Order in the Working Memory, the engine will execute the init

code initializing the total variable to zero. Then it will iterate over all OrderItem objects for that

order, executing the action for each one (in the example, it will sum the value of all items into

the total variable). After iterating over all OrderItem objects, it will return the value corresponding

to the result expression (in the above example, the value of variable total). Finally, the engine

will try to match the result with the Number pattern, and if the double value is greater than 100,

the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon

as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an

expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply

to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user

writes it in order to benefit from the improved performance on update and retract.

The accumulate CE can be used to execute any action on source objects. The following example

instantiates and populates a custom object:

rule "Accumulate using custom objects"

when

 $person : Person($likes : likes)

 $cheesery : Cheesery(totalAmount > 100)

 from accumulate($cheese : Cheese(type == $likes),

 init(Cheesery cheesery = new Cheesery();),

 action(cheesery.addCheese($cheese);),

 reverse(cheesery.removeCheese($cheese);),

 result(cheesery));

then

 // do something

end

4.8.3.10.1. Accumulate Functions

The accumulate CE is a very powerful CE, but it gets real declarative and easy to use when using

predefined functions that are known as Accumulate Functions. They work exactly like accumulate,

but instead of explicitly writing custom code in every accumulate CE, the user can use predefined

code for common operations.

Chapter 4. The Rule Language

146

For instance, the rule to apply discount on orders written in the previous section, could be written

in the following way, using Accumulate Functions:

rule "Apply 10% discount to orders over US$ 100,00"

when

 $order : Order()

 $total : Number(doubleValue > 100)

 from accumulate(OrderItem(order == $order, $value : value),

 sum($value))

then

 # apply discount to $order

end

In the above example, sum is an Accumulate Function and will sum the $value of all OrderItems

and return the result.

Drools ships with the following built-in accumulate functions:

• average

• min

• max

• count

• sum

These common functions accept any expression as input. For instance, if someone wants to

calculate the average profit on all items of an order, a rule could be written using the average

function:

rule "Average profit"

when

 $order : Order()

 $profit : Number()

 from accumulate(OrderItem(order == $order, $cost : cost, $price : price)

 average(1 - $cost / $price))

then

 # average profit for $order is $profit

end

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific

functions can easily be added to the engine and rules can start to use them without any restrictions.

To implement a new Accumulate Functions all one needs to do is to create a Java class that

Left Hand Side (when) Conditional Elements

147

implements the org.drools.base.acumulators.AccumulateFunction interface and add a line

to the configuration file or set a system property to let the engine know about the new function.

As an example of an Accumulate Function implementation, the following is the implementation

of the average function:

/*

 * Copyright 2007 JBoss Inc

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 *

 * Created on Jun 21, 2007

 */

package org.drools.base.accumulators;

/**

 * An implementation of an accumulator capable of calculating average values

 *

 * @author etirelli

 *

 */

public class AverageAccumulateFunction implements AccumulateFunction {

 protected static class AverageData {

 public int count = 0;

 public double total = 0;

 }

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#createContext()

 */

 public Object createContext() {

 return new AverageData();

 }

Chapter 4. The Rule Language

148

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#init(java.lang.Object)

 */

 public void init(Object context) throws Exception {

 AverageData data = (AverageData) context;

 data.count = 0;

 data.total = 0;

 }

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#accumulate(java.lang.Object,

 * java.lang.Object)

 */

 public void accumulate(Object context,

 Object value) {

 AverageData data = (AverageData) context;

 data.count++;

 data.total += ((Number) value).doubleValue();

 }

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#reverse(java.lang.Object,

 * java.lang.Object)

 */

 public void reverse(Object context,

 Object value) throws Exception {

 AverageData data = (AverageData) context;

 data.count--;

 data.total -= ((Number) value).doubleValue();

 }

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#getResult(java.lang.Object)

 */

 public Object getResult(Object context) throws Exception {

 AverageData data = (AverageData) context;

 return new Double(data.count == 0 ? 0 : data.total / data.count);

 }

 /* (non-Javadoc)

 * @see org.drools.base.accumulators.AccumulateFunction#supportsReverse()

 */

 public boolean supportsReverse() {

The Right Hand Side (then)

149

 return true;

 }

}

The code for the function is very simple, as we could expect, as all the "dirty" integration work is

done by the engine. Finally, to plug the function into the engine, we added it to the configuration file:

drools.accumulate.function.average =

 org.drools.base.accumulators.AverageAccumulateFunction

Here, "drools.accumulate.function." is a prefix that must always be used,

"average" is how the function will be used in the rule file, and

"org.drools.base.accumulators.AverageAccumulateFunction" is the fully qualified name of the

class that implements the function behavior.

4.8.4. The Right Hand Side (then)

4.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;

this part should contain a list of actions to be executed. It is bad practice to use imperative or

conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then

do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus

keeping it declarative and readable. If you find you need imperative and/or conditional code in the

RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose

of the RHS is to insert, retractor modify working memory data. To assist with that there are a few

convenience methods you can use to modify working memory; without having to first reference

a working memory instance.

update(object, handle); will tell the engine that an object has changed (one that has been bound

to something on the LHS) and rules may need to be reconsidered.

update(object); can also be used; here the Knowledge Helper will look up the facthandle for you,

via an identity check, for the passed object. (Note that if you provide Property Change Listeners

to your Java beans that you are inserting into the engine, you can avoid the need to call update()

when the object changes.)

insert(new Something()); will place a new object of your creation into the Working Memory.

insertLogical(new Something()); is similar to insert, but the object will be automatically

retracted when there are no more facts to support the truth of the currently firing rule.

retract(handle); removes an object from Working Memory.

Chapter 4. The Rule Language

150

These convenience methods are basically macros that provide short cuts to the KnowledgeHelper

instance that lets you access your Working Memory from rules files. The predefined variable

drools of type KnowledgeHelper lets you call several other useful methods. (Refer to the

KnowledgeHelper interface documentation for more advanced operations).

• The call drools.halt() terminates rule execution immediately. This is required for returning

control to the point whence the current session was put to work with fireUntilHalt().

• Methods insert(Object o), update(Object o) and retract(Object o) can be called on

drools as well, but due to their frequent use they can be called without the object reference.

• drools.getWorkingMemory() returns the WorkingMemory object.

• drools.setFocus(String s) sets the focus to the specified agenda group.

• drools.getRule().getName(), called from a rule's RHS, returns the name of the rule.

• drools.getTuple() returns the Tuple that matches the currently executing rule, and

drools.getActivation() delivers the corresponding Activation. (These calls are useful for

logging and debugging purposes.)

The full Knowlege Runtime API is exposed through another predefined variable, kcontext,

of type KnowledgeContext. Its method getKnowledgeRuntime() delivers an object of type

KnowledgeRuntime, which, in turn, provides access to a wealth of methods, many of which are

quite useful for coding RHS logic.

• The call kcontext.getKnowledgeRuntime().halt() terminates rule execution immediately.

• The accessor getAgenda() returns a reference to this session's Agenda, which in turn provides

access to the various rule groups: activation groups, agenda groups, and rule flow groups. A

fairly common paradigm is the activation of some agenda group, which could be done with the

lengthy call:

// give focus to the agenda group CleanUp

kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

(You can achieve the same using drools.setFocus("CleanUp").)

• To run a query, you call getQueryResults(String query), whereupon you may process the

results, as explained in section “Query”.

• A set of methods dealing with event management lets you, among other things, add and remove

event listeners for the Working Memory and the Agenda.

A Note on Auto-boxing and Primitive Types

151

• MethodgetKnowledgeBase() returns the KnowledgeBase object, the backbone of all the

Knowledge in your system, and the originator of the current session.

• You can manage globals with setGlobal(...), getGlobal(...) and getGlobals().

• Method getEnvironment() returns the runtime's Environment which works much like what

you know as your operating system's environment.

4.8.4.2. The modify Statement

This language extension provides a structured approach to fact updates. It combines the update

operation with a number of setter calls to change the object's fields. This is the syntax schema

for the modify statement:

modify (<fact-expression>) {

 <expression> [, <expression>]*

}

The parenthesized <fact-expression> must yield a fact object reference. The expression list in

the block should consist of setter calls for the given object, to be written without the usual object

reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 4.69. A modify statement

rule "modify stilton"

when

 $stilton : Cheese(type == "stilton")

then

 modify($stilton){

 setPrice(20),

 setAge("overripe")

 }

end

4.8.5. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound

to an int primitive when used in a code block or expression will no longer need manual unboxing;

unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable

bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to

handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system

Chapter 4. The Rule Language

152

attempts to coerce one of the values into a comparable format; so a primitive is comparable to

an object wrapper.

4.9. Query

Figure 4.44. query

A query is a simple way to search the working memory for facts that match the stated conditions.

Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"

nor "then". A query has an optional set of parameters, each of which can be optionally typed. If

the type is not given, the type Object is assumed. The engine will attempt to coerce the values

as needed. Query names are global to the KnowledgeBase; so do not add queries of the same

name to different packages for the same RuleBase.

To return the results use ksession.getQueryResults("name"), where "name" is the query's

name. This returns a list of query results, which allow you to retrieve the objects that matched

the query.

The first example presents a simple query for all the people over the age of 30. The second one,

using parameters, combines the age limit with a location.

Example 4.70. Query People over the age of 30

query "people over the age of 30"

 person : Person(age > 30)

end

Domain Specific Languages

153

Example 4.71. Query People over the age of x, and who live in y

query "people over the age of x" (int x, String y)

 person : Person(age > x, location == y)

end

We iterate over the returned QueryResults using a standard "for" loop. Each element is a

QueryResultsRow which we can use to access each of the columns in the tuple. These columns

can be accessed by bound declaration name or index position.

Example 4.72. Query People over the age of 30

QueryResults results = ksession.getQueryResults("people over the age of 30");

System.out.println("we have " + results.size() + " people over the age of 30");

System.out.println("These people are are over 30:");

for (QueryResultsRow row : results) {

 Person person = (Person) row.get("person");

 System.out.println(person.getName() + "\n");

}

4.10. Domain Specific Languages

As mentioned previously, (or DSLs) are a way of extending the rule language to your problem

domain. They are wired in to the rule language for you, and can make use of all the underlying

rule language and engine features.

DSLs are used both in the IDE, as well as the web based BRMS. Of course as rules are text, you

can use them even without this tooling.

4.10.1. When to use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the domain

objects that the engine operates on. DSLs can also act as "templates" of conditions or actions

that are used over and over in your rules, perhaps only with parameters changing each time. If

your rules need to be read and validated by less technical folk, (such as Business Analysts) the

DSLs are definitely for you. If the conditions or consequences of your rules follow similar patterns

which you can express in a template. You wish to hide away your implementation details, and

focus on the business rule. You want to provide a controlled means of editing rules based on pre-

defined templates.

DSLs have no impact on the rules at runtime, they are just a parse/compile time feature.

Chapter 4. The Rule Language

154

Note that Drools 4 DSLs are quite different from Drools 2 XML based DSLs. It is still possible

to do Drools 2 style XML languages - if you require this, then take a look at the Drools 4 XML

rule language, and consider using XSLT to map from your XML language to the Drools 4 XML

language.

4.10.2. Editing and managing a DSL

A DSL's configuration like most things is stored in plain text. If you use the IDE, you get a nice

graphical editor (with some validation), but the format of the file is quite simple, and is basically

a properties file.

Note that since Drools 4.0, DSLs have become more powerful in allowing you to customise almost

any part of the language, including keywords. Regular expressions can also be used to match

words/sentences if needed (this is provided for enhanced localisation). However, not all features

are supported by all the tools (although you can use them, the content assistance just may not

be 100% accurate in certain cases).

Example 4.73. Example mapping

[when]This is {something}=Something(something=={something})

Referring to the above example, the [when] refers to the scope of the expression: ie does it belong

on the LHS or the RHS of a rule. The part after the [scope] is the expression that you use in the

rule (typically a natural language expression, but it doesn't have to be). The part on the right of

the "=" is the mapping into the rule language (of course the form of this depends on if you are

talking about the RHS or the LHS - if its the LHS, then its the normal LHS syntax, if its the RHS

then its fragments of Java code for instance).

The parser will take the expression you specify, and extract the values that match where the

{something} (named Tokens) appear in the input. The values that match the tokens are then

interpolated with the corresponding {something} (named Tokens) on the right hand side of the

mapping (the target expression that the rule engine actually uses).

Note also that the "sentences" above can be regular expressions. This means the parser will match

the sentence fragements that match the expressions. This means you can use (for instance) the

'?' to indicate the character before it is optional (think of each sentence as a regular expression

pattern - this means if you want to use regex characters - you will need to escape them with a

'\' of course.

It is important to note that the DSL expressions are processed one line at a time. This means that in

the above example, all the text after "This is " to the end of the line will be included as the value for

"{something}" when it is interpolated into the target string. This may not be exactly what you want,

as you may want to "chain" together different DSL expressions to generate a target expression.

The best way around this is to make sure that the {tokens} are enclosed with characters or words.

This means that the parser will scan along the sentence, and pluck out the value BETWEEN the

characters (in the example below they are double-quotes). Note that the characters that surround

Editing and managing a DSL

155

the token are not included in when interpolating, just the contents between them (rather then all

the way to the end of the line, as would otherwise be the case).

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also

wrap words around the {tokens} to make sure you enclose the data you want to capture (see

other example).

Example 4.74. Example with quotes

[when]This is "{something}" and "{another}"=Something(something=="{something}",

 another=="{another}")

[when]This is {also} valid=Another(something=="{also}")

It is a good idea to try and avoid punctuation in your DSL expressions where possible, other then

quotes and the like - keep it simple and things will be easier. Using a DSL can make debugging

slightly harder when you are first building rules, but it can make the maintenance easier (and of

course the readability of the rules).

The "{" and "}" characters should only be used on the left hand side of the mapping (the expression)

to mark tokens. On the right hand side you can use "{" and "}" on their own if needed - such as

if (foo) \{

 doSomething();\ }

as well as with the token names as shown above.

PLEASE NOTE that if you want curly braces to appear literally as curly braces, then escape them

with a backslack (\). Otherwise it may think it is a token to be replaced.

Don't forget that if you are capturing strings from users, you will also need the quotes on the right

hand side of the mapping, just like a normal rule, as the result of the mapping must be a valid

expression in the rule language.

Example 4.75. Some more examples

#This is a comment to be ignored.

[when]There is a Person with name of "{name}"=Person(name=="{name}")

[when]Person is at least {age} years old and lives in "{location}"=Person(age > {age},

 location=="{location}")

[then]Log "{message}"=System.out.println("{message}");

[when]And = and

Referring to the above examples, this would render the following input as shown below:

Chapter 4. The Rule Language

156

Example 4.76. Some examples as processed

There is a Person with name of "kitty" ---> Person(name="kitty")

Person is at least 42 years old and lives in "atlanta" ---> Person(age > 42, location="atlanta")

Log "boo" ---> System.out.println("boo");

There is a Person with name of "bob" and Person is at least 30 years old and lives in "atlanta"

 ---> Person(name="kitty") and Person(age > 30, location="atlanta")

4.10.3. Using a DSL in your rules

A good way to get started if you are new to Rules (and DSLs) is just write the rules as you normally

would against your object model. You can unit test as you go (like a good agile citizen!). Once

you feel comfortable, you can look at extracting a domain language to express what you are doing

in the rules. Note that once you have started using the "expander" keyword, you will get errors if

the parser does not recognize expressions you have in there - you need to move everything to

the DSL. As a way around this, you can prefix each line with ">" and it will tell the parser to take

that line literally, and not try and expand it (this is handy also if you are debugging why something

isn't working).

Also, it is better to rename the extension of your rules file from ".drl" to ".dslr" when you start using

DSLs, as that will allow the IDE to correctly recognize and work with your rules file.

As you work through building up your DSL, you will find that the DSL configuration stabilizes pretty

quickly, and that as you add new rules and edit rules you are reusing the same DSL expressions

over and over. The aim is to make things as fluent as possible.

To use the DSL when you want to compile and run the rules, you will need to pass the DSL

configuration source along with the rule source.

PackageBuilder builder = new PackageBuilder();

builder.addPackageFromDrl(source, dsl);

//source is a reader for the rule source, dsl is a reader for the DSL configuration

You will also need to specify the expander by name in the rule source file:

expander your-expander.dsl

Typically you keep the DSL in the same directory as the rule, but this is not required if you are

using the above API (you only need to pass a reader). Otherwise everything is just the same.

You can chain DSL expressions together on one line, as long as it is clear to the parser what

the {tokens} are (otherwise you risk reading in too much text until the end of the line). The DSL

Adding constraints to facts

157

expressions are processed according to the mapping file, top to bottom in order. You can also

have the resulting rule expressions span lines - this means that you can do things like:

Example 4.77. Chaining DSL Expressions

There is a person called Bob who is happy

 Or

There is a person called Mike who is sad

Of course this assumes that "Or" is mapped to the "or" conditional element (which is a sensible

thing to do).

4.10.4. Adding constraints to facts

A common requirement when writing rule conditions is to be able to add many constraints to fact

declarations. A fact may have many (dozens) of fields, all of which could be used or not used at

various times. To come up with every combination as separate DSL statements would in many

cases not be feasible.

The DSL facility allows you to achieve this however, with a simple convention. If your DSL

expression starts with a "-", then it will be assumed to be a field constraint, which will be added

to the declaration that is above it (one per line).

This is easier to explain with an example. Lets take look at Cheese class, with the following fields:

type, price, age, country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

If you know ahead of time that you will use all the fields, all the time, it is easy to do a mapping

using the above techniques. However, chances are that you will have many fields, and many

combinations. If this is the case, you can setup your mappings like so:

[when]There is a Cheese with=Cheese()

[when]- age is less than {age}=age<{age}

[when]- type is '{type}'=type=='{type}'

[when]- country equal to '{country}'=country=='{country}'

IMPORTANT: It is NOT possible to use the "-" feature after an accumulate statement to add

constraints to the accumulate pattern. This limitation will be removed in the future.

You can then write rules with conditions like the following:

Chapter 4. The Rule Language

158

There is a Cheese with

 - age is less than 42

 - type is 'stilton'

The parser will pick up the "-" lines (they have to be on their own line) and add them as constraints

to the declaration above. So in this specific case, using the above mappings, is the equivalent

to doing (in DRL):

Cheese(age<42, type=='stilton')

The parser will do all the work for you, meaning you just define mappings for individual constraints,

and can combine them how you like (if you are using context assistant, if you press "-" followed by

CTRL+space it will conveniently provide you with a filtered list of field constraints to choose from.

To take this further, after alter the DSL to have [when][org.drools.Cheese]- age is less than {age} ...

(and similar to all the items in the example above).

The extra [org.drools.Cheese] indicates that the sentence only applies for the main constraint

sentence above it (in this case "There is a Cheese with"). For example, if you have a class

called "Cheese" - then if you are adding contraints to the rule (by typing "-" and waiting for

content assistance) then it will know that only items marked as having an object-scope of

"com.yourcompany.Something" are valid, and suggest only them. This is entirely optional (you

can leave out that section if needed - OR it can be left blank).

Now, if the Cheese object has several int attributes such as age, rating, etc, in this case, one can

create a common operator that can be used by any attribute. NOTE: The order of the entries in

the DSL is important.

[when][]is less than or equal to=<=

[when][]is less than=<

[when][]is greater than or equal to=>=

[when][]is greater than=>

[when][]is equal to===

[when][]equals===

[when][]- {field:\w*} {operator} {value:\d*}={field} {operator} {value}

[when]There is a Cheese with=Cheese()

Now, you can then write rules with conditions like the following:

There is a Cheese with

 - age is less than 42

How it works

159

 - rating is greater than 50

 - type equals 'stilton'

The parser will pick up the "-" lines (they have to be on their own line) and add them as constraints

to the declaration above. So in this specific case, using the above mappings, is the equivalent

to doing (in DRL):

Cheese(age<42, rating > 50, type=='stilton')

4.10.5. How it works

DSLs kick in when the rule is parsed. The DSL configuration is read and supplied to the parser,

so the parser can "expand" the DSL expressions into the real rule language expressions.

When the parser is processing the rules, it will check if an "expander" representing a DSL is

enabled, if it is, it will try to expand the expression based on the context of where it is the rule.

If an expression can not be expanded, then an error will be added to the results, and the line

number recorded (this insures against typos when editing the rules with a DSL). At present, the

DSL expander is fairly space sensitive, but this will be made more tolerant in future releases

(including tolerance for a wide range of punctuation).

The expansion itself works by trying to match a line against the expression in the DSL

configuration. The values that correspond to the token place holders are stored in a map based

on the name of the token, and then interpolated to the target mapping. The values that match the

token placeholders are extracted by either searching until the end of the line, or until a character

or word after the token place holder is matched. The "{" and "}" are not included in the values that

are extracted, they are only used to demarcate the tokens - you should not use these characters

in the DSL expression (but you can in the target).

4.10.6. Creating a DSL from scratch

DSLs can be aid with capturing rules if the rules are well known, just not in any technically usable

format (ie. sitting around in people brains). Until we are able to have those little sockets in our

necks like in the Matrix, our means of getting stuff into computers is still the old fashioned way.

Rules engines require an object or a data model to operate on - in many cases you may know this

up front. In other cases the model will be discovered with the rules. In any case, rules generally

work better with simpler flatter object models. In some cases, this may mean having a rule object

model which is a subset of the main applications model (perhaps mapped from it). Object models

can often have complex relationships and hierarchies in them - for rules you will want to simplify

and flatten the model where possible, and let the rule engine infer relationships (as it provides

future flexibility). As stated previously, DSLs can have an advantage of providing some insulation

between the object model and the rule language.

Chapter 4. The Rule Language

160

Coming up with a DSL is a collaborative approach for both technical and domain experts.

Historically there was a role called "knowledge engineer" which is someone skilled in both the rule

technology, and in capturing rules. Over a short period of time, your DSL should stabilize, which

means that changes to rules are done entirely using the DSL. A suggested approach if you are

starting from scratch is the following workflow:

• Capture rules as loose "if then" statements - this is really to get an idea of size and complexity

(possibly in a text document).

• Look for recurring statements in the rules captured. Also look for the rule objects/fields (and

match them up with what may already be known of the object model).

• Create a new DSL, and start adding statements from the above steps. Provide the "holes" for

data to be edited (as many statements will be similar, with only some data changing).

• Use the above DSL, and try to write the rules just like that appear in the "if then" statements

from the first and second steps. Iterate this process until patterns appear and things stabilize.

At this stage, you are not so worried about the rule language underneath, just the DSL.

• At this stage you will need to look at the Objects, and the Fields that are needed for the rules,

reconcile this with the datamodel so far.

• Map the DSL statements to the rule language, based on the object model. Then repeat the

process. Obviously this is best done in small steps, to make sure that things are on the right

track.

4.10.7. Scope and keywords

If you are editing the DSL with the GUI, or as text, you will notice there is a [scope] item at the

start of each mapping line. This indicates if the sentence/word applies to the LHS, RHS or is a

keyword. Valid values for this are [condition], [consequence] and [keyword] (with [when] and [then]

being the same as [condition] and [consequence] respectively). When [keyword] is used, it means

you can map any keyword of the language like "rule" or "end" to something else. Generally this

is only used when you want to have a non English rule language (and you would ideally map it

to a single word).

4.10.8. DSLs in the BRMS and IDE

You can use DSLs in the BRMS in both guided editor rules, and textual rules that use a dsl. (In

fact, the same applies to the IDE).

In the guided editor - the DSLs generally have to be simpler - what you are doing is defining little

"forms" to capture data from users in text fields (ie as you pick a DSL expression - it will add an

item to the GUI which only allows you enter data in the {token} parts of a DSL expression). You

can not use sophisticated regular expressions to match text. However, in textual rules (which have

a .dslr extension in the IDE) you are free to use the full power as needed.

XML Rule Language

161

In the BRMS - when you build a package the DSLs are already included and all the work is done

for you. In the IDE (or in any IDE) - you will either need to use the drools-ant task, or otherwise

use the code shown in sections above.

4.11. XML Rule Language

As an option, Drools also supports a "native" rule language as an alternative to DRL. This allows

you to capture and manage your rules as XML data. Just like the non-XML DRL format, the XML

format is parsed into the internal "AST" representation - as fast as possible (using a SAX parser).

There is no external transformation step required. All the features are available with XML that are

available to DRL.

4.11.1. When to use XML

There are several scenarios that XML is desirable. However, we recommend that it is not a default

choice, as XML is not readily human readable (unless you like headaches) and can create visually

bloated rules.

If you do want to edit XML by hand, use a good schema aware editor that provides nice hierarchical

views of the XML, ideally visually (commercial tools like XMLSpy, Oxygen etc are good, but cost

money, but then so do headache tablets).

Other scenarios where you may want to use the XML format are if you have a tool that generates

rules from some input (programmatically generated rules), or perhaps interchange from another

rule language, or from another tool that emits XML (using XSLT you can easily transform between

XML formats). Note you can always generate normal DRL as well.

Alternatively you may be embedding Drools in a product that already uses XML for configuration,

so you would like the rules to be in an XML format. You may be creating your own rule language

on XML - note that you can always use the AST objects directly to create your own rule language

as well (the options are many, due to the open architecture).

4.11.2. The XML format

A full W3C standards (XMLSchema) compliant XSD is provided that describes the XML language,

which will not be repeated here verbatim. A summary of the language follows.

Example 4.78. A rule in XML

<?xml version="1.0" encoding="UTF-8"?>

<package name="com.sample"

 xmlns="http://drools.org/drools-4.0"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

 xs:schemaLocation="http://drools.org/drools-4.0 drools-4.0.xsd">

<import name="java.util.HashMap" />

Chapter 4. The Rule Language

162

<import name="org.drools.*" />

<global identifier="x" type="com.sample.X" />

<global identifier="yada" type="com.sample.Yada" />

<function return-type="void" name="myFunc">

 <parameter identifier="foo" type="Bar" />

 <parameter identifier="bada" type="Bing" />

 <body>

 System.out.println("hello world");

 </body>

</function>

<rule name="simple_rule">

<rule-attribute name="salience" value="10" />

<rule-attribute name="no-loop" value="true" />

<rule-attribute name="agenda-group" value="agenda-group" />

<rule-attribute name="activation-group" value="activation-group" />

<lhs>

 <pattern identifier="foo2" object-type="Bar" >

 <or-constraint-connective>

 <and-constraint-connective>

 <field-constraint field-name="a">

 <or-restriction-connective>

 <and-restriction-connective>

 <literal-restriction evaluator=">" value="60" />

 <literal-restriction evaluator="<" value="70" />

 </and-restriction-connective>

 <and-restriction-connective>

 <literal-restriction evaluator="<" value="50" />

 <literal-restriction evaluator=">" value="55" />

 </and-restriction-connective>

 </or-restriction-connective>

 </field-constraint>

 <field-constraint field-name="a3">

 <literal-restriction evaluator="==" value="black" />

 </field-constraint>

 </and-constraint-connective>

 <and-constraint-connective>

 <field-constraint field-name="a">

The XML format

163

 <literal-restriction evaluator="==" value="40" />

 </field-constraint>

 <field-constraint field-name="a3">

 <literal-restriction evaluator="==" value="pink" />

 </field-constraint>

 </and-constraint-connective>

 <and-constraint-connective>

 <field-constraint field-name="a">

 <literal-restriction evaluator="==" value="12"/>

 </field-constraint>

 <field-constraint field-name="a3">

 <or-restriction-connective>

 <literal-restriction evaluator="==" value="yellow"/>

 <literal-restriction evaluator="==" value="blue" />

 </or-restriction-connective>

 </field-constraint>

 </and-constraint-connective>

 </or-constraint-connective>

 </pattern>

 <not>

 <pattern object-type="Person">

 <field-constraint field-name="likes">

 <variable-restriction evaluator="==" identifier="type"/>

 </field-constraint>

 </pattern>

 <exists>

 <pattern object-type="Person">

 <field-constraint field-name="likes">

 <variable-restriction evaluator="==" identifier="type"/>

 </field-constraint>

 </pattern>

 </exists>

 </not>

 <or-conditional-element>

 <pattern identifier="foo3" object-type="Bar" >

 <field-constraint field-name="a">

 <or-restriction-connective>

 <literal-restriction evaluator="==" value="3" />

Chapter 4. The Rule Language

164

 <literal-restriction evaluator="==" value="4" />

 </or-restriction-connective>

 </field-constraint>

 <field-constraint field-name="a3">

 <literal-restriction evaluator="==" value="hello" />

 </field-constraint>

 <field-constraint field-name="a4">

 <literal-restriction evaluator="==" value="null" />

 </field-constraint>

 </pattern>

 <pattern identifier="foo4" object-type="Bar" >

 <field-binding field-name="a" identifier="a4" />

 <field-constraint field-name="a">

 <literal-restriction evaluator="!=" value="4" />

 <literal-restriction evaluator="!=" value="5" />

 </field-constraint>

 </pattern>

 </or-conditional-element>

 <pattern identifier="foo5" object-type="Bar" >

 <field-constraint field-name="b">

 <or-restriction-connective>

 <return-value-restriction evaluator="==" >a4 + 1</return-value-restriction>

 <variable-restriction evaluator=">" identifier="a4" />

 <qualified-identifier-restriction evaluator="==">

 org.drools.Bar.BAR_ENUM_VALUE

 </qualified-identifier-restriction>

 </or-restriction-connective>

 </field-constraint>

 </pattern>

 <pattern identifier="foo6" object-type="Bar" >

 <field-binding field-name="a" identifier="a4" />

 <field-constraint field-name="b">

 <literal-restriction evaluator="==" value="6" />

 </field-constraint>

 </pattern>

 </lhs>

 <rhs>

 if (a == b) {

 assert(foo3);

 } else {

 retract(foo4);

The XML format

165

 }

 System.out.println(a4);

 </rhs>

</rule>

</package>

In the preceding XML text you will see the typical XML element, the package declaration, imports,

globals, functions, and the rule itself. Most of the elements are self explanatory if you have some

understanding of the Drools features.

The import elements import the types you wish to use in the rule.

The global elements define global objects that can be referred to in the rules.

The function contains a function declaration, for a function to be used in the rules. You have to

specify a return type, a unique name and parameters, in the body goes a snippet of code.

The rule is discussed below.

Example 4.79. Detail of rule element

<rule name="simple_rule">

<rule-attribute name="salience" value="10" />

<rule-attribute name="no-loop" value="true" />

<rule-attribute name="agenda-group" value="agenda-group" />

<rule-attribute name="activation-group" value="activation-group" />

<lhs>

 <pattern identifier="cheese" object-type="Cheese">

 <from>

 <accumulate>

 <pattern object-type="Person"></pattern>

 <init>

 int total = 0;

 </init>

 <action>

 total += $cheese.getPrice();

 </action>

 <result>

 new Integer(total));

 </result>

 </accumulate>

 </from>

Chapter 4. The Rule Language

166

 </pattern>

 <pattern identifier="max" object-type="Number">

 <from>

 <accumulate>

 <pattern identifier="cheese" object-type="Cheese"></pattern>

 <external-function evaluator="max" expression="$price"/>

 </accumulate>

 </from>

 </pattern>

</lhs>

<rhs>

 list1.add($cheese);

</rhs>

</rule>

In the above detail of the rule we see that the rule has LHS and RHS (conditions and consequence)

sections. The RHS is simple, it is just a block of semantic code that will be executed when the rule

is activated. The LHS is slightly more complicated as it contains nested elements for conditional

elements, constraints and restrictions.

A key element of the LHS is the Pattern element. This allows you to specify a type (class) and

perhaps bind a variable to an instance of that class. Nested under the pattern object are constraints

and restrictions that have to be met. The Predicate and Return Value constraints allow Java

expressions to be embedded.

That leaves the conditional elements, not, exists, and, or etc. They work like their DRL

counterparts. Elements that are nested under and an "and" element are logically "anded" together.

Likewise with "or" (and you can nest things further). "Exists" and "Not" work around patterns, to

check for the existence or nonexistence of a fact meeting the pattern's constraints.

The Eval element allows the execution of a valid snippet of Java code - as long as it evaluates to a

boolean (do not end it with a semi-colon, as it is just a fragment) - this can include calling a function.

The Eval is less efficient than the columns, as the rule engine has to evaluate it each time, but it

is a "catch all" feature for when you can express what you need to do with Column constraints.

4.11.3. Legacy Drools 2.x XML rule format

The Drools 2.x legacy XML format is no longer supported by Drools XML parser

4.11.4. Automatic transforming between formats (XML and DRL)

Drools comes with some utility classes to transform between formats. This works by parsing the

rules from the source format into the AST, and then "dumping" out to the appropriate target format.

Automatic transforming between formats (XML and DRL)

167

This allows you, for example, to write rules in DRL, and when needed, export to XML if necessary

at some point in the future.

The classes to look at if you need to do this are:

XmlDumper - for exporting XML.

DrlDumper - for exporting DRL.

DrlParser - reading DRL.

XmlPackageReader - reading XML.

Using combinations of the above, you can convert between any format (including round trip). Note

that DSLs will not be preserved (from DRLs that are using a DSL) - but they will be able to be

converted.

Feel free to make use of XSLT to provide all sorts of possibilities for XML, XSLT and its ilk are

what make XML powerful.

168

Chapter 5.

169

Chapter 5. Authoring

5.1. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact" (ref. Wikipedia) way of representing conditional logic,

and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),

and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,

OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table

editors will be included in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very

briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered

into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can

be taken advantage of.

5.1.1. When to use Decision tables

Decision tables may want to be considered as a course of action if rules exist that can be

expressed as rule templates and data. In each row of a decision table, data is collected that is

combined with the templates to generate a rule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy

to continue this way, you can also manage your business rules this way. This also assumes you are

happy to manage packages of rules in .xls or .csv files. Decision tables are not recommended

for rules that do not follow a set of templates, or where there are a small number of rules (or if there

is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there

can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

5.1.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

Chapter 5. Authoring

170

Overview

171

In the above examples, the technical aspects of the decision table have been collapsed away

(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,

E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning

is indicated by the headers in Row 16. Column B is just a description. It is customary to use color

to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not

necessarily the case. Ideally, rules are authored without regard for the order of

rows, simply because this makes maintenance easier, as rows will not need to be

shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules

that match may fire. (Some people are confused by this. It is possible to clear the agenda when

a rule fires and simulate a very simple decision table where the first match exists.) Also note that

you can have multiple tables on one spreadsheet. This way, rules can be grouped where they

share common templates, yet at the end of the day they are all combined into one rule package.

Decision tables are essentially a tool to generate DRL rules automatically.

Chapter 5. Authoring

172

5.1.3. How decision tables work

The key point to keep in mind is that in a decision table each row is a rule, and each column in

that row is either a condition or action for that rule.

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the

starting row and column). Other keywords are also used to define other package level attributes

(covered later). It is important to keep the keywords in one column. By convention the second

column ("B") is used for this, but it can be any column (convention is to leave a margin on the

left for notes). In the following diagram, C is actually the column where it starts. Everything to the

left of this is ignored.

If we expand the hidden sections, it starts to make more sense how it works; note the keywords

in column C.

How decision tables work

173

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name

to be used in the rule package that will encompass all the rules. This name is optional, using a

default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later.

The RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some

rule templates. After the RuleTable keyword there is a name, used to prefix the names of the

generated rules. The row numbers are appended to guarantee unique rule names. The column

of RuleTable indicates the column in which the rules start; columns to the left are ignored.

Note

In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and

ACTION indicate that the data in the columns below are for either the LHS or the RHS parts of a

rule. There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option

is not in use, the row must be left blank; however this option is usually found to be quite useful.

When using this row, the values in the cells below (row 16) become constraints on that object

type. In the above case, it will generate Person(age=="42") and Cheese(type=="stilton"),

Chapter 5. Authoring

174

where 42 and "stilton" come from row 18. In the above example, the "==" is implicit; if just a field

name is given it will assume that it is to look for exact matches.

Note

An ObjectType declaration can span columns (via merged cells), meaning that all

columns below the merged range will be combined into the one set of constraints.

Row 16 contains the rule templates themselves. They can use the "$para" place holder to indicate

where data from the cells below will be populated ($param can be sued or $1, $2 etc to indicate

parameters from a comma separated list in a cell below). Row 17 is ignored as it is textual

descriptions of the rule template.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15,

to generate rules. If a cell contains no data, then its template is ignored. (This would mean that

some condition or action does not apply for that rule row.) Rule rows are read until there is a blank

row. Multiple RuleTables can exsist in a sheet. Row 20 contains another keyword, and a value.

The row positions of keywords like this do not matter (most people put them at the top) but their

column should be the same one where the RuleTable or RuleSet keywords should appear. In our

case column C has been chosen to be significant, but column A could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

//row 18

rule "Cheese_fans_18"

when

 Person(age=="42")

 Cheese(type=="stilton")

then

 list.add("Old man stilton");

end

Note

The contraints age=="42" and type=="stilton" are interpreted as single

constraints, to be added to the respective ObjectType in the cell above. If the cells

above were spanned, then there could be multiple constraints on one "column".

5.1.4. Keywords and Syntax

5.1.4.1. Syntax of templates

The syntax of what goes in the templates is dependent on if it is a CONDITION column or ACTION

column. In most cases, it is identical to "vanilla" DRL for the LHS or RHS respectively. This means

Keywords and Syntax

175

in the LHS, the constraint language must be used, and in the RHS it is a snippet of code to be

executed.

The $param place holder is used in templates to indicate where data form the cell will be

interpolated. You can also use $1 to the same effect. If the cell contains a comma separated list

of values, the symbols $1, $2, etc. may be used to indicate which positional parameter from the

list of values in the cell will be used. The forall(DELIMITER){SNIPPET} function can be used to

loop over all available comma separated values.

Example 5.1. Interpolating cell data

If the template is [Foo(bar == $param)] and the cell is [42] then the result will be [Foo(bar == 42)].

If the template is [Foo(bar < $1, baz == $2)] and the cell is [42,43] then the result will be [Foo(bar

< 42, baz ==43)]

If the template is [forall(&&){Foo(bar != $)}] and the cell is [42,43] then the result will be [Foo(bar !

= 42) && Foo(bar != 43)]

For conditions: How snippets are rendered depends on the presence of an entry in the row above,

where ObjectType declarations may appear. If there is such an entry, the snippets are rendered

as individual constraints on that ObjectType. If there isn't, then they are just rendered as is (with

values substituted). If just a plain field is entered (as in the example above) then it will assume that

this means equality. If another operator is placed at the end of the snippet, then the values will be

interpolated at the end of the constraint, otherwise it will look for $param as outlined previously.

For consequences: How snippets are rendered also depends on the presence of an entry in the

row immediately above it. If there is no entry, the output is simply the interpolated snippets. If

there is something there (which would typically be a bound variable or a global like in the example

above) then it will append it as a method call on that object (refer to the above example).

This may be easiest to understand with some examples, given below.

Chapter 5. Authoring

176

The above shows how the Person ObjectType declaration spans 2 columns in the spreadsheet,

thus both constraints will appear as Person(age == ... , type == ...). As before, since only the field

names are present in the snippet, they imply an equality test.

The above condition example shows how you use interpolation to place the values in the snippet

(in this case it would result in Person(age == "42")).

Keywords and Syntax

177

The above condition example shows that if you put an operator on the end by itself, the values

will be placed after the operator automatically.

A binding can be put in before the column (the constraints will be added from the cells below).

Anything can be placed in the ObjectType row. (For instance, this could be a precondition for the

columns in the spreadsheet columns that follow).

Chapter 5. Authoring

178

This shows how the consequence could be done by simple interpolation: just leave the cell above

blank. (The same applies to condition columns.) With this style anything can be placed in the

consequence, not just one method call.

5.1.4.2. Keywords

By default, only the first worksheet is looked at for decision tables. The following keywords can

be used in the spreadsheet.

Table 5.1. Keywords to use before the RuleTable

Keyword Description Inclusion Status

RuleSet The cell to the right of this

contains the ruleset name

One only (if left out, it will the

default)

Sequential The cell to the right of this can

be true or false. If true, then

salience is used to ensure that

rules fire from the top down

Optional

Import The cell to the right contains a

comma separated list of Java

classes to import

Optional

Functions The cell immediately to the

right can contain functions

which can be used in the

rule snippets. Drools supports

functions defined in the DRL,

allowing logic to be embedded

in the rule, and changed

without hard coding, use with

Optional

Keywords and Syntax

179

Keyword Description Inclusion Status

care. Same syntax as regular

DRL.

Variables The cell immediately to the

right can contain global

declarations which Drools

supports. This is a type,

followed by a variable name. (if

multiple variables are needed,

comma separate them).

Optional

Queries The cell immediately to the

right can contain global

declarations which Drools

supports. This is a type,

followed by a query name. (if

multiple queries are needed,

comma separate them).

Optional

Table 5.2. RuleTable keyword

Keyword Description Inclusion Status

RuleTable A cell starting with RuleTable

indicates the start of a

definition of a rule table. The

actual rule table starts the

next row down. The rule

table is read left-to-right, and

top-down, until there is one

BLANK ROW.

At least one. If there are more,

then they are all added to the

one ruleset.

Table 5.3. Column header keywords to use in the RuleTable

Keyword Description Inclusion Status

CONDITION Indicates that this column will

be for rule conditions

At least one per rule table

ACTION Indicates that this column will

be for rule consequences

At least one per rule table

PRIORITY Indicates that this column's

values will set the 'salience'

value for the rule row.

Overrides the 'Sequential' flag.

Optional

Chapter 5. Authoring

180

Keyword Description Inclusion Status

DURATION Indicates that this columns

values will set the duration

values for the rule row.

Optional

NAME Indicates that this columns

values will set the name for the

rule generated from that row

Optional

NO-LOOP Indicates that this rule is not

allowed to loop. For this option

to function correctly, there

must be a value (true or false)

in the cell for the option to take

effect. If the cell remains blank

then this option will not be set

for the row.

Optional

ACTIVATION-GROUP Cell values in this column

mean that the rule-row

belongs to the given XOR/

activation group. An Activation

group means that only one rule

in the named group will fire (i.e.

the first one to fire cancels the

other rules activations).

Optional

AGENDA-GROUP Cell values in this column

mean that the rule-row

belongs to the given agenda

group (that is one way

of controlling flow between

groups of rules - see also "rule

flow").

Optional

RULEFLOW-GROUP Cell values in this column

mean that the rule-row

belongs to the given rule-flow

group.

Optional

Below you can find examples of these keywords, which affect the rules generated for each row.

Note that the header name is what is important in most cases. If no value appears in the cells

below it, then the attribute will not apply (it will be ignored) for that specific row.

Creating and integrating Spreadsheet based Decision Tables

181

The following is an example of Import (comma delimited), Variables (globals) - also comma

delimited, and a function block (can be multiple functions - just the usual DRL syntax). This can

appear in the same column as the "RuleSet" keyword, and can be below all the rule rows if you

desire.

5.1.5. Creating and integrating Spreadsheet based Decision

Tables

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There

is really only one class to look at: SpreadsheetCompiler. This class will take spreadsheets in

various formats, and generate rules in DRL (which you can then use in the normal way). The

SpreadsheetCompiler can just be used to generate partial rule files if it is wished, and assemble

it into a complete rule package after the fact (this allows the separation of technical and non-

technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being

used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an

xls compatible spreadsheet editor will need to be used).

Chapter 5. Authoring

182

5.1.6. Managing business rules in decision tables

5.1.6.1. Workflow and collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend

themselves to close collaboration between IT and domain experts, while making the business

rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be

something like:

1. Business analyst takes a template decision table (from a repository, or from IT)

2. Decision table business language descriptions are entered in the table(s)

3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language

(descriptions) to scripts (this may involve software development of course, if it is a new

application or data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around

is also fine etc).

7. In parallel, the technical person can develop test cases for the rules (liaising with business

analysts) as these test cases can be used to verify rules and rule changes once the system

is running.

5.1.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into

spreadsheets, such as validating fields. Lists that are stored in other worksheets can be used to

provide valid lists of values for cells, like in the following diagram.

Rule Templates

183

Some applications provide a limited ability to keep a history of changes, but it is recommended to

use an alternative means of revision control. When changes are being made to rules over time,

older versions are archived (many open source solutions exist for this, such as Subversion or Git).

5.1.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates" (in

the drools-templates module). These use any tabular data source as a source of rule data -

populating a template to generate many rules. This can allow both for more flexible spreadsheets,

but also rules in existing databases for instance (at the cost of developing the template up front

to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which

part of the rule is data-driven. So whilst you can do everything you could do in decision tables

you can also do the following:

• store your data in a database (or any other format)

• conditionally generate rules based on the values in the data

• use data for any part of your rules (e.g. condition operator, class name, property name)

• run different templates over the same data

5.1.7.1. A decision table-like example

As an example, a more classic decision table is shown, but without any hidden rows for the rule

meta data (so the spreadsheet only contains the raw data to generate the rules).

Chapter 5. Authoring

184

See the ExampleCheese.xls in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows

1 and 2 containing rule metadata. With rule templates the data is completely separate from the

rules. This has two handy consequences - you can apply multiple rule templates to the same data

and your data is not tied to your rules at all. So what does the template look like?

1 template header

2 age

3 type

4 log

5

6 package org.drools.examples.templates;

7

8 global java.util.List list;

9

10 template "cheesefans"

11

12 rule "Cheese fans_@{row.rowNumber}"

13 when

14 Person(age == @{age})

15 Cheese(type == "@{type}")

16 then

17 list.add("@{log}");

18 end

19

20 end template

Referring to the above:

Rule Templates

185

Line 1: all rule templates start with "template header"

Lines 2-4: following the header is the list of columns in the order they appear in the data. In this

 case we are calling the first column "age", the second "type" and the third "log".

Lines 5: empty line signifying the end of the column definitions

Lines 6-9: standard rule header text. This is standard rule DRL and will appear at the top of the

 generated DRL. Put the package statement and any imports and global definitions

Line 10: The "template" keyword signals the start of a rule template. There can be more than one

 template in a template file. The template should have a unique name.

Lines 11-18: The rule template - see below

Line 20: "end template" signifies the end of the template.

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is

currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of

data and enables you to generate unique rule names. For each row of data a rule will be generated

with the values in the data substituted for the tokens in the template. With the example data above

the following rule file would be generated:

package org.drools.examples.templates;

global java.util.List list;

rule "Cheese fans_1"

when

 Person(age == 42)

 Cheese(type == "stilton")

then

 list.add("Old man stilton");

end

rule "Cheese fans_2"

when

 Person(age == 21)

 Cheese(type == "cheddar")

then

 list.add("Young man cheddar");

end

The code to run this is simple:

Chapter 5. Authoring

186

DecisionTableConfiguration dtableconfiguration =

 KnowledgeBuilderFactory.newDecisionTableConfiguration();

dtableconfiguration.setInputType(DecisionTableInputType.XLS);

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource(getSpreadsheetName(),

 getClass()),

 ResourceType.DTABLE,

 dtableconfiguration);

5.2. Templates

If you discover that you have a group of rules following the same arrangement of patterns,

constraints and actions on the RHS, differing only in constants or names for objects or fields, you

might think of employing Drool's rule template feature for generating the actual rules. You would

write a rule template file, containing the textual skeleton of your rule and use the Drools template

compiler in combination with a collection of objects providing the actual values for the "flesh" of

the rules for their instantiation.

The mechanism is very similar to what a macro processor does. The major advantage proffered by

template expansion is that it's nicely integrated in the overall handling of Knowledge Resources.

Caution

This is an experimental feature. In particular, the API is subject to change.

5.2.1. The Rule Template File

A rule template file begins with a header defining the placeholders, or formal template parameters

for the strings that are to be inserted during instantiation. After the first line, which invariably

contains template header, you should write a number of lines, each of which contains a single

parameter name.

Example 5.2. Rule template file: template header

template header

parameter-name-1

...

parameter-name-n

The Rule Template File

187

...

The template header is followed by the text that is to be replicated and interpolated with the actual

parameters. It may begin with a package statement, followed by some additional lines. These may

be sectioned into one or more templates, each of them between a pair of matching template and

end template statements. The template takes an argument, which puts a name to the template.

The name can be a simple unquoted name or an arbitrary string enclosed in double quotes. The

template text between these lines may contain one or more rules, constituting the "raw material"

for the expansion.

Example 5.3. Rule template file: templates

template header

parameter-name-1

...

parameter-name-n

package ... # optional

header text # optional

template template-name

...

// template text

...

end template

...

The resulting text will begin with the package line and the header text following it, if present. Then,

each template text will be expanded individually, yielding one set of rules for each of the actual

parameter sets. Therefore, the structure of the template sections affect the order of the generated

rules, since the generator iterates over the sections and then over the set of actual parameters.

Any interpolation takes place between a pair of template and end template statements, when

this template is expanded. The template text is scanned for occurrences of parameter expansions

written according to:

@{parameter-name}

The name between '@{' and '}' should be one of the parameter names defined in the template

header. The substitution is effected anywhere, even within string literals.

Chapter 5. Authoring

188

An important parameter is available without having to be included in the data source providing

the actual values. The parameter substitution @{row.rowNumber} expands to the integers 0, 1, 2,

etc., providing a unique distinction for the instantiation derived from a parameter set. You would

use this as part of each rule name, because, without this precaution, there would be duplicate rule

names. (You are, of course, free to use your own identification included as an extra parameter.)

5.2.2. Expanding a Template

To expand a template, you must prepare a data source. This can be a spreadsheet, as explained

in the previous section. Here, we'll concentrate on expansion driven by Java objects. There

are two straightforward ways of supplying values for a fixed set of names: Java objects, in the

JavaBeans style, and Maps. Both of them can be arranged in a Collection, whose elements will

be processed during the expansion, resulting in an instantiation for each element.

5.2.2.1. Instantiation from Java Objects

You may use a Java object that provides getter methods corresponding to all of the parameter

names of your template file. If, for instance, you have defined a header

template header

type

limit

word

the following Java class could be used:

public class ParamSet {

 //...

 public ParamSet(String t, int l, boolean w) {

 //...

 }

 public String getType(){...}

 public int getLimit(){...}

 public boolean isWord(){...}

}

Although interpolation is pure text manipulation, the actual values supplied may be of any type, just

as long as this type provides a reasonable toString() method. (For simple types, the eponymous

static method of the related class from java.lang is used.)

Expanding a Template

189

Assuming that we have created a Collection<ParamSet> for a template file template.drl, we

can now proceed to request its expansion.

Collection<ParamSet> paramSets = new ArrayList<ParamSet>();

// populate paramSets

paramSets.add(new ParamSet("Foo", 42, true));

paramSets.add(new ParamSet("Bar", 13, false));

ObjectDataCompiler converter = new ObjectDataCompiler();

InputStream templateStream =

 this.getClass().getResourceAsStream("template.drl");

String drl = converter.compile(objs, templateStream);

The resulting string contains the expanded rules text. You could write it to a file and proceed as

usual, but it's also possible to feed this to a KnowledgeBuilder and continue with the resulting

Knowledge Packages.

KnowledgeBase kBase = KnowledgeBaseFactory.newKnowledgeBase();

KnowledgeBuilder kBuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

Reader rdr = new StringReader(drl);

kBuilder.add(ResourceFactory.newReaderResource(rdr), ResourceType.DRL);

if(kBuilder.hasErrors()){

 // ...

 throw new IllegalStateException("DRL errors");

}

kBase.addKnowledgePackages(kBuilder.getKnowledgePackages());

5.2.2.2. Instantiation from Maps

A Map that provides the values for substituting template parameters should have a (string) key

set matching all of the parameter names. Again, values could be from any class, as long as they

provide a good toString() method. The expansion would use the same approach, just differing

in the way the map collection is composed.

Collection<Map<String,Object>> paramMaps = new ArrayList<Map<String,Object>>();

// populate paramMaps

ObjectDataCompiler converter = new ObjectDataCompiler();

InputStream templateStream =

 this.getClass().getResourceAsStream("template.drl");

Chapter 5. Authoring

190

String drl = converter.compile(objs, templateStream);

5.2.3. Example

The following example illustrates template expansion. It is based on simple objects of class Item

containing a couple of integer fields and an enum field of type ItemCode.

public class Item {

 // ...

 public Item(String n, int p, int w, ItemCode c){...}

 public String getName() {...}

 public int getWeight() {...}

 public int getPrice() {...}

 public ItemCode getCode() {...}

}

public enum ItemCode {

 LOCK,

 STOCK,

 BARREL;

}

The rule template contains a single rule. Notice that the field name for the range test is a parameter,

which enables us to instantiate the template for different fields.

template header

field

lower

upper

codes

package range;

template "inRange"

rule "is in range @{row.rowNumber}"

when

 Item($name : name, $v : @{field} >= @{lower} && <= @{upper}, $code : code @{codes})

then

 System.out.println("Item " + $name + " @{field} in range: " + $v + " code: " + $code);

end

Example

191

end template

The next code snippet is from the application, where several parameter sets have to be set up.

First, there is class ParamSet, for storing a set of actual parameters.

public class ParamSet {

 //...

 private EnumSet<ItemCode> codeSet;

 public ParamSet(String f, int l, int u, EnumSet<ItemCode> cs){...}

 public String getField() { return field; }

 public int getLower() { return lower; }

 public int getUpper() { return upper; }

 public String getCodes(){

 StringBuilder sb = new StringBuilder();

 String conn = "";

 for(ItemCode ic: codeSet){

 sb.append(conn).append(" == ItemCode.").append(ic);

 conn = " ||";

 }

 return sb.toString();

 }

}

Note that the method getCodes() does returns the EnumSet<ItemCode> field value as a String

value representing a multiple restriction, i.e., a test for one out of a list of values.

The task of expanding a template, passing the resulting DRL text to a Knowledge Builder and

adding the resulting Knowledge Packages to a Knowledge Base is generic. The utility class

Expander takes care of this, using a Knowledge Base, the InputStream with the rule template

and the collection of parameter sets.

public class Expander {

 public void expand(KnowledgeBase kBase, InputStream is, Collection<?> act)

 throws Exception {

 ObjectDataCompiler converter = new ObjectDataCompiler();

 String drl = converter.compile(act, is);

Chapter 5. Authoring

192

 KnowledgeBuilder kBuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Reader rdr = new StringReader(drl);

 kBuilder.add(ResourceFactory.newReaderResource(rdr), ResourceType.DRL);

 if(kBuilder.hasErrors()){

 for(KnowledgeBuilderError err: kBuilder.getErrors()){

 System.err.println(err.toString());

 }

 throw new IllegalStateException("DRL errors");

 }

 kBase.addKnowledgePackages(kBuilder.getKnowledgePackages());

 }

}

We are now all set to prepare the Knowledge Base with some generated rules. First, we define

several parameter sets, constructed as ParamSet objects, and add them to a List, which is

passed to the expand method shown above. Then we launch a stateful session, insert a few Item,

and watch what happens.

Collection<ParamSet> cfl = new ArrayList<ParamSet>();

cfl.add(new ParamSet("weight", 10, 99, EnumSet.of(ItemCode.LOCK, ItemCode.STOCK)));

cfl.add(new ParamSet("price", 10, 50, EnumSet.of(ItemCode.BARREL)));

KnowledgeBase kBase = KnowledgeBaseFactory.newKnowledgeBase();

Expander ex = new Expander();

InputStream dis = new FileInputStream(new File("rangeTemp.drl"));

ex.expand(kBase, dis, cfl);

StatefulKnowledgeSession session = kBase.newStatefulKnowledgeSession();

session.insert(new Item("A", 130, 42, ItemCode.LOCK));

session.insert(new Item("B", 44, 100, ItemCode.STOCK));

session.insert(new Item("C", 123, 180, ItemCode.BARREL));

session.insert(new Item("D", 85, 9, ItemCode.LOCK));

session.fireAllRules();

Notice that the two resulting rules deal with different fields, one with an item's weight, the other

one with its price. - Below is the output.

Item E price in range: 25 code: BARREL

Example

193

Item A weight in range: 42 code: LOCK

194

Chapter 6.

195

Chapter 6. The Java Rule Engine

API

6.1. Introduction

Drools provides an implementation of the Java Rule Engine API (known as JSR94), which allows

for support of multiple rule engines from a single API. JSR94 does not deal in any way with the

rule language itself. W3C is working on the Rule Interchange Format (RIF) [http://www.w3.org/

TR/2006/WD-rif-ucr-20060323/] and the OMG has started to work on a standard based on RuleML

[http://ruleml.org/]. Recently Haley Systems has also proposed a rule language standard called

RML.

It should be remembered that the JSR94 standard represents the "least common denominator" in

features across rule engines. This means that there is less functionality in the JSR94 API than in

the standard Drools API. So, by using JSR94, you forfeit the advantage of using the full capabilities

of the Drools Rule Engine. It is necessary to expose further functionality, like globals and support

for DRL, DSL and XML, via property maps due to the very basic feature set of JSR94; this

introduces non-portable functionality. Furthermore, as JSR94 does not provide a rule language,

you are only solving a small fraction of the complexity of switching rule engines with very little

gain. So, while we support JSR94, for those that insist on using it, we strongly recommend you

program against the Drools API.

6.2. How To Use

There are two parts to working with JSR94. The first part is the administrative API that deals with

building and registering RuleExecutionSet objects, the second part is runtime session execution

of these RuleExecutionSets.

6.2.1. Building and Registering RuleExecutionSets

The RuleServiceProviderManager manages the registration and retrieval of

RuleServiceProviders. The Drools RuleServiceProvider implementation is automatically

registered via a static block when the class is loaded using Class.forNamem, in much the same

way as JDBC drivers.

Example 6.1. Automatic RuleServiceProvider Registration

// RuleServiceProviderImpl is registered to "http://drools.org/"

// via a static initialization block

Class.forName("org.drools.jsr94.rules.RuleServiceProviderImpl");

http://www.w3.org/TR/2006/WD-rif-ucr-20060323/
http://www.w3.org/TR/2006/WD-rif-ucr-20060323/
http://www.w3.org/TR/2006/WD-rif-ucr-20060323/
http://ruleml.org/
http://ruleml.org/

Chapter 6. The Java Rule Engi...

196

// Get the rule service provider from the provider manager.

RuleServiceProvider ruleServiceProvider =

 RuleServiceProviderManager.getRuleServiceProvider("http://drools.org/");

The RuleServiceProvider provides access to the RuleRuntime and RuleAdministrator APIs. The

RuleAdministrator provides an administration API for the management of RuleExecutionSet

objects, making it possible to register a RuleExecutionSet that can then be retrieved via the

RuleRuntime.

First, you need to create a RuleExecutionSet before it can be registered;

RuleAdministrator provides factory methods to return an empty LocalRuleExecutionSetProvider

or RuleExecutionSetProvider. The LocalRuleExecutionSetProvider should be used

to load a RuleExecutionSets from local sources that are not serializable,

like Streams. The RuleExecutionSetProvider can be used to load

RuleExecutionSets from serializable sources, like DOM Elements or Packages.

Both the "ruleAdministrator.getLocalRuleExecutionSetProvider(null);" and the

"ruleAdministrator.getRuleExecutionSetProvider(null);" take null as a parameter, as the

properties map for these methods is not currently used.

Example 6.2. Registering a LocalRuleExecutionSet with the

RuleAdministrator API

// Get the RuleAdministration

RuleAdministrator ruleAdministrator = ruleServiceProvider.getRuleAdministrator();

LocalRuleExecutionSetProvider ruleExecutionSetProvider =

 ruleAdministrator.getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl

URL drlUrl = new URL("http://mydomain.org/sources/myrules.drl");

Reader drlReader = new InputStreamReader(drlUrl.openStream());

// Create the RuleExecutionSet for the drl

RuleExecutionSet ruleExecutionSet =

 ruleExecutionSetProvider.createRuleExecutionSet(drlReader, null);

"ruleExecutionSetProvider.createRuleExecutionSet(reader, null)" in the above example takes a

null parameter for the properties map; however it can actually be used to provide configuration for

the incoming source. When null is passed the default is used to load the input as a drl. Allowed

keys for a map are "source" and "dsl". The key "source" takes "drl" or "xml" as its value; you set

"source" to "drl" to load a DRL, or to "xml" to load an XML source; "xml" will ignore any "dsl" key/

value settings. The "dsl" key can take a Reader or a String (the contents of the dsl) as a value.

Using Stateful and Stateless RuleSessions

197

Example 6.3. Specifying a DSL when registering a LocalRuleExecutionSet

// Get the RuleAdministration

RuleAdministration ruleAdministrator = ruleServiceProvider.getRuleAdministrator();

LocalRuleExecutionSetProvider ruleExecutionSetProvider =

 ruleAdministrator.getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl

URL drlUrl = new URL("http://mydomain.org/sources/myrules.drl");

Reader drlReader = new InputStreamReader(drlUrl.openStream());

// Create a Reader for the dsl and a put in the properties map

URL dslUrl = new URL("http://mydomain.org/sources/myrules.dsl");

Reader dslReader = new InputStreamReader(dslUrl.openStream());

Map properties = new HashMap();

properties.put("source", "drl");

properties.put("dsl", dslReader);

// Create the RuleExecutionSet for the drl and dsl

RuleExecutionSet ruleExecutionSet =

 ruleExecutionSetProvider.createRuleExecutionSet(reader, properties);

When registering a RuleExecutionSet you must specify the name to be used for its retrieval. There

is also a field to pass properties, which is currently unused - so just pass null.

Example 6.4. Register the RuleExecutionSet

// Register the RuleExecutionSet with the RuleAdministrator

String uri = ruleExecutionSet.getName();

ruleAdministrator.registerRuleExecutionSet(uri, ruleExecutionSet, null);

6.2.2. Using Stateful and Stateless RuleSessions

The Runtime, obtained from the RuleServiceProvider, is used to create stateful and stateless rule

engine sessions.

Example 6.5. Getting the RuleRuntime

RuleRuntime ruleRuntime = ruleServiceProvider.getRuleRuntime();

Chapter 6. The Java Rule Engi...

198

To create a rule session you must use one of the two RuleRuntime

public constants. These are "RuleRuntime.STATEFUL_SESSION_TYPE" and

"RuleRuntime.STATELESS_SESSION_TYPE", accompanying the URI to the RuleExecutionSet

you wish to instantiate a RuleSession for. The properties map can be null, or it can be used

to specify globals, as shown in the next section. The createRuleSession(...) method returns a

RuleSession instance which must then be cast to StatefulRuleSession or StatelessRuleSession.

Example 6.6. Stateful Rule

(StatefulRuleSession) session =

 ruleRuntime.createRuleSession(uri,

 null,

 RuleRuntime.STATEFUL_SESSION_TYPE);

session.addObject(new PurchaseOrder("lots of cheese"));

session.executeRules();

The StatelessRuleSession has a very simple API; you can only call executeRules(List list) passing

a list of objects, and an optional filter, the resulting objects are then returned.

Example 6.7. Stateless

(StatelessRuleSession) session =

 ruleRuntime.createRuleSession(uri,

 null,

 RuleRuntime.STATELESS_SESSION_TYPE);

List list = new ArrayList();

list.add(new PurchaseOrder("even more cheese"));

List results = new ArrayList();

results = session.executeRules(list);

6.2.2.1. Globals

It is possible to support globals with JSR94, in a manner that is not portable, by using the properties

map passed to the RuleSession factory method. Globals must be defined in the DRL or XML

file first, otherwise an exception will be thrown. The key represents the identifier declared in the

DRL or XML, and the value is the instance you wish to be used in the execution. In the following

example the results are collected in a java.util.List which is used as global:

java.util.List globalList = new java.util.ArrayList();

java.util.Map map = new java.util.HashMap();

References

199

map.put("list", globalList);

//Open a stateless Session

StatelessRuleSession srs =

 (StatelessRuleSession) runtime.createRuleSession("SistersRules",

 map,

 RuleRuntime.STATELESS_SESSION_TYPE);

...

// Persons added to List

// call executeRules() giving a List of Objects as parameter

// There are rules which will put Objects in the List

// fetch the list from the map

List list = (java.util.List) map.get("list");

Do not forget to declare the global "list" in your DRL:

package SistersRules;

import org.drools.jsr94.rules.Person;

global java.util.List list

rule FindSisters

when

 $person1 : Person ($name1:name)

 $person2 : Person ($name2:name)

 eval($person1.hasSister($person2))

then

 list.add($person1.getName() + " and " + $person2.getName() +" are sisters");

 assert($person1.getName() + " and " + $person2.getName() +" are sisters");

end

6.3. References

If you need more information on JSR 94, please refer to the following references

1. Official JCP Specification for Java Rule Engine API (JSR 94)

• http://www.jcp.org/en/jsr/detail?id=94

2. The Java Rule Engine API documentation

• http://www.javarules.org/api_doc/api/index.html

3. The Logic From The Bottom Line: An Introduction to The Drools Project. By N. Alex Rupp,

published on TheServiceSide.com in 2004

• http://www.theserverside.com/articles/article.tss?l=Drools

http://www.jcp.org/en/jsr/detail?id=94
http://www.javarules.org/api_doc/api/index.html
http://www.theserverside.com/articles/article.tss?l=Drools

Chapter 6. The Java Rule Engi...

200

4. Getting Started With the Java Rule Engine API (JSR 94): Toward Rule-Based Applications. By

Dr. Qusay H. Mahmoud, published on Sun Developer Network in 2005

• http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

5. Jess and the javax.rules API. By Ernest Friedman-Hill, published on TheServerSide.com in

2003

• http://www.theserverside.com/articles/article.tss?l=Jess

http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
http://www.theserverside.com/articles/article.tss?l=Jess

Chapter 7.

201

Chapter 7. The Rule IDE (Eclipse)
The Eclipse based IDE provides developers (and very technical users) with an environment to edit

and test rules in various formats, and integrate it deeply with their applications. In cases where

you prefer business rules and web tooling, you will want to look at the BRMS (but using the BRMS

and the IDE together is not uncommon).

The Drools IDE is delivered as an Eclipse plug-in, which allows you to author and manage rules

from within Eclipse, as well as integrate rules with your application. This is an optional tool, and

not all components are required to be used, you can use what components are relevant to you.

The Drools IDE is also a part of the Red Hat Developer Studio (formerly known as JBoss IDE).

This guide will cover some of the features of JBoss Drools, in as far as the IDE touches on them

(it is assumed that the reader has some familiarity with rule engines, and Drools in particular. It is

important to note that none of the underlying features of the rule engine are dependent on Eclipse,

and integrators are free to use their tools of choice, as always ! Plenty of people use IntelliJ with

rules, for instance.

Note

You can get the plug-in either as a zip to download, or from an update site. Refer

to the chapter on installation.

Chapter 7. The Rule IDE (Eclipse)

202

Figure 7.1. Overview

7.1. Features Outline

The rules IDE has the following features

1. Textual/graphical rule editor

a. An editor that is aware of DRL syntax, and provides content assistance (including an outline

view)

b. An editor that is aware of DSL (domain specific langauge) extensions, and provides content

assistance.

2. RuleFlow graphical editor

You can edit visual graphs which represent a process (a rule flow). The RuleFlow can then be

applied to your rule package to have imperative control.

3. Wizards for fast creation of

a. a "rules" project

b. a rule resource, either as a DRL file or a "guided rule editor" file (.brl)

c. a Domain Specific language

Creating a Rule Project

203

d. a decision table

e. a ruleflow

4. A domain specific language editor

a. Create and manage mappings from your user's language to the rule language

5. Rule validation

a. As rules are entered, the rule is "built" in the background and errors reported via the problem

view where possible

The above features make use of Eclipse infrastructure and features, with all of the power of Eclipse

being available.

7.2. Creating a Rule Project

The aim of the new project wizard is to set up an executable scaffold project to start using rules

immediately. This will set up a basic structure, the classpath, sample rules and a test case to get

you started.

Figure 7.2. New rule project scaffolding

When you choose to create a new "rule project" you will get a choice to add some default artifacts

to it, like rules, decision tables, ruleflows, etc. These can serve as a starting point, and will give

you something executable almost immediately, which you can then modify and mould to your

Chapter 7. The Rule IDE (Eclipse)

204

needs. The simplest case (a hello world rule) is shown below. Feel free to experiment with the

plug-in at this point.

Figure 7.3. New rule project result

The newly created project contains an example rule file (Sample.drl) in the src/rules directory

and an example Java file (DroolsTest.java) that can be used to execute the rules in a Drools

engine. You'll find this in the folder src/java, in the com.sample package. All the other jars that are

necessary during execution are also added to the classpath in a custom classpath container called

Drools Library. Rules do not have to be kept in "Java" projects at all, this is just a convenience for

people who are already using Eclipse as their Java IDE.

Important note: The Drools plug-in adds a "Drools Builder" capability to your Eclipse instance.

This means you can enable a builder on any project that will build and validate your rules when

resources change. This happens automatically with the Rule Project Wizard, but you can also

enable it manually on any project. One downside of this is that if you have rule files with a large

number of rules (more than 500 rules per file), it means that the background builder may be doing

a lot of work to build the rules on each change. An option here is to turn off the builder, or put

the large rules into .rule files, where you can still use the rule editor, but it won't build them in the

background. To fully validate the rules you will need to run them in a unit test of course.

7.3. Creating a New Rule and Wizards

You can create a rule simple as an empty text ".drl" file, or use the wizard to do so. The wizard

menu can be invoked with Control+N, or by choosing it from the toolbar, where there is a menu

with the JBoss Drools icon.

Creating a New Rule and Wizards

205

Figure 7.4. The wizard menu

The wizard will ask for some basic options for generating a rule resource. These are just hints -

you can change your mind later. For storing rule files you would typically create a directory src/

rules and create suitably named subdirectories. The package name is mandatory, and is similar

to a package name in Java; i.e., it establishes a namespace for grouping related rules.

Chapter 7. The Rule IDE (Eclipse)

206

Figure 7.5. New rule wizard

The result of this wizard is a rule skeleton, for you to expand. As with all wizards, they are an

optional help - you don't have to use them if you don't want to.

7.4. Textual Rule Editor

The rule editor is where rule managers and developers will be spending most of their time. The

rule editor follows the pattern of a normal text editor in Eclipse, with all the customary features of

a text editor. On top of this, the rule editor provides pop-up content assistance. You invoke pop-

up content assistance the "normal" way by pressing Control+Space.

Textual Rule Editor

207

Figure 7.6. The rule editor in action

The rule editor works on files that have a .drl (or .rule) extension. Usually these contain related

rules, but it would also be possible to have rules in individual files, grouped by being in the same

package "namespace", if you so prefer. These DRL files are plain text files.

You can see from the example above that the rule group is using a domain specific language.

Note the expander keyword, which tells the rule compiler to look for a dsl file of that name, to

resolve the rule language. Even with the domain specific language (DSL) the rules are still stored

as plain text as you see it onscreen, which allows simpler management of rules and versions,

e.g., comparing versions of rules.

The editor has an outline view that is kept in sync with the structure of the rules; it is updated on

save. This provides a quick way of navigating around rules by name, even in a file which may

have hundreds of rules. The items are sorted alphabetically by default.

Chapter 7. The Rule IDE (Eclipse)

208

Figure 7.7. The rule outline view

7.5. The Guided Editor (Rule GUI)

A new feature of the Drools IDE (since version 4) is the guided editor for rules. This is similar to

the web based editor that is available in the BRMS. It allows you to build rules in a GUI-driven

fashion, based on your object model.

Figure 7.8. The guided editor

To create a rule this way, use the wizard menu. It will create an instance of a .brl file and open it in

the guided editor. This editor works based on a .package file in the same directory as the .brl file.

In this "package" file you have the package name and import statements - just like you would at

the top of a normal DRL file. First time you create a brl rule you will need to populate the package

Drools Views

209

file with the fact classes you are interested in. Once you have this, the guided editor will be able

to prompt you with facts and their fields so that you can build rules graphically.

The guided editor works off the model classes (or fact classes) that you configure. It then is able

to "render" to DRL the rule that you have entered graphically. You can do this visually - and use it

as a basis for learning DRL, or you can use it and build rules of the brl directly. One way to do this

is by using the drools-ant module, which is an ant task that creates all the rule assets in a folder,

as a rule package, so that you can then deploy it as a binary file. Alternatively, you can use the

following snippet of code to convert the brl to a drl rule.

BRXMLPersistence read = BRXMLPersistence.getInstance();

BRDRLPersistence write = BRDRLPersistence.getInstance();

String brl = ... // read from the .brl file as needed...

String outputDRL = write.marshall(read.unmarshal(brl));

// Pass the outputDRL to the PackageBuilder, as usual

7.6. Drools Views

When debugging an application using a Drools engine, these views can be used to check the

state of the Drools engine itself: the Working Memory View, the Agenda View, and the Global

Data View. To be able to use these views, create breakpoints in your code invoking the working

memory. For example, the line where you call workingMemory.fireAllRules() is a good candidate.

If the debugger halts at that joinpoint, you should select the working memory variable in the debug

variables view. The available views can then be used to show the details of the selected working

memory:

1. The Working Memory View shows all elements of the Drools working memory.

2. The Agenda View shows all elements on the agenda. For each rule on the agenda, the rule

name and bound variables are shown.

3. The Global Data View shows all global data currently defined in the Drools working memory.

The Audit view can be used to display audit logs containing events that were logged during the

execution of a rules engine, in tree form.

Chapter 7. The Rule IDE (Eclipse)

210

7.6.1. The Working Memory View

The Working Memory View shows all elements in the working memory of the Drools engine.

An action is added to the right of the view, to customize what is shown:

1. The Show Logical Structure toggles showing the logical structure of the elements in the working

memory, or all their details. Logical structures allow for visualizing sets of elements in a more

obvious way.

7.6.2. The Agenda View

The Agenda View shows all elements on the agenda. For each rule on the agenda, the rule name

and bound variables are shown.

An action is added to the right of the view, to customize what is shown:

1. The Show Logical Structure toggles showing the logical structure of the agenda item, or all their

details. Logical structures allow for example visualizing sets of elements in a more obvious way.

The logical structure of AgendaItems shows the rule that is represented by the AgendaItem,

and the values of all the parameters used in the rule.

The Global Data View

211

7.6.3. The Global Data View

The Global Data View shows all global data currently defined in the Drools engine.

An action is added to the right of the view, to customize what is shown:

1. The Show Logical Structure toggles showing the logical structure of the elements in the working

memory, or all their details. Logical structures allow for example visualizing sets of elements

in a more obvious way.

7.6.4. The Audit View

Chapter 7. The Rule IDE (Eclipse)

212

The audit view visualizes an audit log, that is optionally created when executing the rules engine.

To create an audit log, use the following code:

WorkingMemory workingMemory = ruleBase.newWorkingMemory();

// Create a new Working Memory Logger, that logs to file.

WorkingMemoryFileLogger logger = new WorkingMemoryFileLogger(workingMemory);

// An event.log file is created in the subdirectory log (which must exist)

// of the working directory.

logger.setFileName("log/event");

workingMemory.assertObject(...);

workingMemory.fireAllRules();

// stop logging

logger.writeToDisk();

Open the log by clicking the Open Log action, the first icon in the Audit View, and select the file.

The Audit View now shows all events that where logged during the executing of the rules. There

are different types of events, each with a different icon:

1. Object inserted, a green square:

2. Object updated, a yellow square:

3. Object removed, a red square:

4. Activation created, a right arrow:

5. Activation cancelled, a left arrow:

6. Activation executed, a blue diamond:

7. Ruleflow start or end, the "process" icon:

Domain Specific Languages

213

8. Ruleflow-group activation or deactivation, the "activity" icon:

9. Rule package addition or removal, the Drools icon:

10.Rule addition or removal, the Drools icon:

All these events show extra information concerning the event, like the id and toString

representation of the object in case of working memory events (insert, modify and retract), the

name of the rule and all the variables bound in the activation in case of an activation event (created,

cancelled or executed). If an event occurs when executing an activation, it is shown as a child of

the activation's execution event. For some events, you can retrieve the "cause":

1. The cause of an object modified or retracted event is the last object event for that object. This

is either the object asserted event, or the last object modified event for that object.

2. The cause of an activation cancelled or executed event is the corresponding activation created

event.

When selecting an event, the cause of that event is shown in green in the audit view (if visible

of course). You can also right click the action and select the "Show Cause" menu item. This will

scroll you to the cause of the selected event.

7.7. Domain Specific Languages

Domain Specific Languages (DSL) enable you to create a language that allows your rules to look

like - rules! Most often the domain specific language reads like natural language. Typically you

would look at how a business analyst would describe the rule, in their own words, and then map

this to your object model, via rule constructs. A side benefit of this is that it can provide an insulation

layer between your domain objects and the rules themselves (as we know you like to refactor).

A domain specific language will grow as the rules grow, and works best when there are common

terms used over an over, with different parameters.

To aid with this, the rule workbench provides an editor for Domain Specific Languages. They are

stored in a plain text format, so you can use any editor of your choice; this format is simply a

slightly enhanced version of the "Properties" file format. The editor will be invoked on any files

with a .dsl extension. There is also a wizard to create a sample DSL.

Chapter 7. The Rule IDE (Eclipse)

214

7.7.1. Editing languages

Figure 7.9. The Domain Specific Language editor

The DSL editor provides a tabular view of the mapping of Language to Rule Expressions. The

Language Expression is what is used in the rules. This also feeds the content assistance for the

rule editor, so that it can suggest Language Expressions from the DSL configuration. (The rule

editor loads the DSL configuration when the rule resource is loaded for editing.) The Rule language

mapping defines the "code" for the rules into which the language expression will be compiled by

the rule engine compiler. The form of this Rule language expression depends on it being intended

for the condition or the action part of a rule. (For the RHS it may be a snippet of Java, for instance).

The "scope" item indicates where the expression belongs, "when" indicating the LHS, "then" the

RHS, and "*" meaning anywhere. It's also possible to create aliases for keywords.

By selecting a mapping item (a row in the table) you can see the expression and mapping in the

text fields below the table. Double clicking or pressing the edit button will open the edit dialog.

Other buttons let you remove and add mappings. Don't remove mappings while they are still in use.

The Rete View

215

Figure 7.10. Language Mapping editor dialog

Here is a short description of the DSL translation process. The parser reads the rule text in a DSL,

line by line, and tries to match some "Language Expression", depending on the scope. After a

match, the values that correspond to a placeholder between curly braces (e.g., {age}) are extracted

from the rule source. The placeholders in the corresponding "Rule Expression" are replaced by

their corresponding value. In the example above, the natural language expression maps to two

constraints on a fact of type Person, based on the fields age and location, and the {age} and

{location} values are extracted from the original rule text.

If you do not wish to use a language mapping for a particular rule in a drl, prefix the expression

with > and the compiler will not try to translate it according to the language definition. Also note

that Domain Specific Languages are optional. When the rule is compiled, the .dsl file will also

need to be available.

7.8. The Rete View

The Rete Tree View shows you the current Rete Network for your DRL file. You display it by clicking

on the tab "Rete Tree" at the bottom of the DRL Editor window. With the Rete Network visualization

being open, you can use drag-and-drop on individual nodes to arrange optimal network overview.

You may also select multiple nodes by dragging a rectangle over them; then the entire group can

be moved around. The Eclips toolbar icons for zooming in and out can be used in the customary

manner.

In the current release there is no export function to creates a gif or jpeg file. Meanwhile, please

use ctrl + alt + print to create a copy of your current Eclipse window, and cut it off.

Chapter 7. The Rule IDE (Eclipse)

216

The Rete View is an advanced feature which takes full advantage of the Eclipse Graphical Editing

Framework (GEF).

The Rete view works only in Drools Rule Projects, where the Drools Builder is set in the project

´s properties.

If you are using Drools in another type of project where you are not having a Drools Rule Project

with the appropriate Drools Builder, you can use a workaround: Set up a little Drools Rule Project

next to it, putting needed libraries into it, and the DRLs you want to inspect with the Rete View.

Just click on the right tab below in the DRL Editor, followed by a click on "Generate Rete View".

7.9. Large DRL Files

Depending on the JDK you use, it may be necessary to increase the permanent generation max

size. Both the SUN and the IBM JDK have a permanent generation, whereas BEA JRockit does

not.

To increase the permanent generation, start Eclipse with -XX:MaxPermSize=###m

Example: c:\Eclipse\Eclipse.exe -XX:MaxPermSize=128m

Rulesets of 4,000 rules or greater should set the permanent generation to at least 128Mb.

Debugging Rules

217

Note

This may also apply to compiling large numbers of rules in general, as there is

generally one or more classes per rule.

As an alternative to the above, you may put rules in a file with the ".rule" extension, and the

background builder will not try to compile them with each change, which may provide performance

improvements if your IDE becomes sluggish with very large numbers of rules.

7.10. Debugging Rules

Figure 7.11. Debugging

You can debug rules during the execution of your Drools application. You can add breakpoints

in the consequences of your rules, and whenever such a breakpoint is encountered during the

execution of the rules, execution is halted. You can then inspect the variables known at that point

and use any of the default debugging actions to decide what should happen next: step over,

continue, etc. You can also use the debug views to inspect the content of the working memory

and the Agenda.

Chapter 7. The Rule IDE (Eclipse)

218

7.10.1. Creating Breakpoints

You can add and remove rule breakpoints in DRL files in two ways, similar to adding breakpoints

to Java files:

1. Double-click the ruler of the DRL editor at the line where you want to add a breakpoint. Note

that rule breakpoints can only be created in the consequence of a rule. Double-clicking on a

line where no breakpoint is allowed will do nothing. A breakpoint can be removed by double-

clicking the ruler once more.

2. If you right-click the ruler, a popup menu will show up, containing the "Toggle breakpoint" action.

Note that rule breakpoints can only be created in the consequence of a rule. The action is

automatically disabled if no rule breakpoint is allowed at that line. Clicking the action will add a

breakpoint at the selected line, or remove it if there was one already.

The Debug Perspective contains a Breakpoints view which can be used to see all defined

breakpoints, get their properties, enable/disable or remove them, etc.

7.10.2. Debugging Rules

Drools breakpoints are only enabled if you debug your application as a Drools Application. You

can do this like this:

Debugging Rules

219

Figure 7.12. Debug as Drools Application

1. Select the main class of your application. Right click it and select the "Debug As >" sub-menu

and select Drools Application. Alternatively, you can also select the "Debug ..." menu item to

open a new dialog for creating, managing and running debug configurations (see the screenshot

below).

2. Select the "Drools Application" item in the left tree and click the "New launch configuration"

button (leftmost icon in the toolbar above the tree). This will create a new configuration with

some of the properties (like project and main class)already filled in, based on the main class

you selected in the beginning. All properties shown here are the same as for any standard

Java program.

Chapter 7. The Rule IDE (Eclipse)

220

3. Change the name of your debug configuration to something meaningful. You can just accept

the defaults for all other properties. For more information about these properties, please check

the Eclipse JDT documentation.

4. Click the "Debug" button on the bottom to start debugging your application. You only have to

define your debug configuration once. The next time you run your Drools application, you don't

have to create a new one but select the previously defined one in the tree on the left, as a sub-

element of the "Drools Application" tree node, and then click the Debug button. The Eclipse

toolbar also contains shortcut buttons to quickly re-execute one of your previous configurations

(at least when one of the Java, Java Debug, or Drools perspectives has been selected).

Figure 7.13. Debug as Drools Application Configuration

After clicking the "Debug" button, the application starts executing and will halt if any breakpoint

is encountered. This can be a Drools rule breakpoint, or any other standard Java breakpoint.

Whenever a Drools rule breakpoint is encountered, the corresponding DRL file is opened and the

active line is highlighted. The Variables view also contains all rule parameters and their value. You

can then use the default Java debug actions to decide what to do next: resume, terminate, step

over, etc. The debug view can also be used to inspect the contents of the Working Memory and

Debugging Rules

221

the Agenda at that time as well. You don't have to select a Working Memory now, as the current

executing working memory is automatically shown.

Figure 7.14. Debugging

222

Chapter 8.

223

Chapter 8. Examples

8.1. Getting the Examples

Make sure the Drools Eclipse plugin is installed, which needs the Graphical Editing Framework

(GEF) dependency installed first. Then download and extract the drools-examples zip file, which

includes an already created Eclipse project. Import that project into a new Eclipse workspace. The

rules all have example classes that execute the rules. If you want to try the examples in another

project (or another IDE) then you will need to set up the dependencies by hand, of course. Many,

but not all of the examples are documented below, enjoy!

8.2. Hello World

Name: Hello World

Main class: org.drools.examples.HelloWorldExample

Type: Java application

Rules file: HelloWorld.drl

Objective: demonstrate basic rules in use

The "Hello World" example shows a simple example of rules usage, and both the MVEL and Java

dialects.

This example demonstrates how to build Knowledge Bases and Sessions. Also, audit logging

and debug outputs are shown, which is ommitted from other examples as it's all very similar. A

KnowledgeBuilder is used to turn a DRL source file into Package objects which the Knowledge

Base can consume. The add method takes a Resource interface and a Resource Type as

parameters. The Resource can be used to retrieve a DRL source file from various locations; in

this case the DRL file is being retrieved from the classpath using a ResourceFactory, but it could

come from a disk file or a URL. Here, we only add a single DRL source file, but multiple DRL files

can be added. Also, DRL files with different namespaces can be added, where the Knowledge

Builder creates a package for each namespace. Multiple packages of different namespaces can

be added to the same Knowledge Base. When all the DRL files have been added, we should

check the builder for errors. While the Knowledge Base will validate the package, it will only have

access to the error information as a String, so if you wish to debug the error information you should

do it on the KnowledgeBuilder instance. Once you know the builder is error free, get the Package

collection, instantiate a KnowledgeBase from the KnowledgeBaseFactory and add the package

collection.

Example 8.1. HelloWorld: Creating the KnowledgeBase and Session

final KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

// this will parse and compile in one step

Chapter 8. Examples

224

kbuilder.add(ResourceFactory.newClassPathResource("HelloWorld.drl",

 HelloWorldExample.class), ResourceType.DRL);

// Check the builder for errors

if (kbuilder.hasErrors()) {

 System.out.println(kbuilder.getErrors().toString());

 throw new RuntimeException("Unable to compile \"HelloWorld.drl\".");

}

// get the compiled packages (which are serializable)

final Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();

// add the packages to a knowledgebase (deploy the knowledge packages).

final KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

kbase.addKnowledgePackages(pkgs);

final StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

Drools has an event model that exposes much of what's happening internally. Two default debug

listeners are supplied, DebugAgendaEventListener and DebugWorkingMemoryEventListener

which print out debug event information to the System.err stream displayed in the Console

window. Adding listeners to a Session is trivial, as shown below. The KnowledgeRuntimeLogger

provides execution auditing, the result of which can be viewed in a graphical viewer. The logger is

actually a specialised implementation built on the Agenda and Working Memory listeners. When

the engine has finished executing, logger.close() must be called.

Most of the examples use the Audit logging features of Drools to record execution flow for later

inspection.

Example 8.2. HelloWorld: Event logging and Auditing

// setup the debug listeners

ksession.addEventListener(new DebugAgendaEventListener());

ksession.addEventListener(new DebugWorkingMemoryEventListener());

// setup the audit logging

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "log/helloworld");

The single class used in this example is very simple. It has two fields: the message, which is a

String and the status which can be one of the two integers HELLO or GOODBYE.

Hello World

225

Example 8.3. HelloWorld example: Message Class

public static class Message {

 public static final int HELLO = 0;

 public static final int GOODBYE = 1;

 private String message;

 private int status;

 ...

}

A single Message object is created with the message text "Hello World" and the status HELLO and

then inserted into the engine, at which point fireAllRules() is executed. Remember that all

the network evaluation is done during the insert time, so that by the time the program execution

reaches the fireAllRules() method call the engine already knows which rules are fully matches

and able to fire.

Example 8.4. HelloWorld: Execution

final Message message = new Message();

message.setMessage("Hello World");

message.setStatus(Message.HELLO);

ksession.insert(message);

ksession.fireAllRules();

logger.close();

ksession.dispose();

To execute the example as a Java application:

1. Open the class org.drools.examples.HelloWorldExample in your Eclipse IDE

2. Right-click the class and select "Run as..." and then "Java application"

If we put a breakpoint on the fireAllRules() method and select the ksession variable, we can

see that the "Hello World" rule is already activated and on the Agenda, confirming that all the

pattern matching work was already done during the insert.

Chapter 8. Examples

226

Figure 8.1. Hello World: fireAllRules Agenda View

The may application print outs go to to System.out while the debug listener print outs go to

System.err.

Example 8.5. HelloWorld: System.out in the Console window

Hello World

Goodbye cruel world

Example 8.6. HelloWorld: System.err in the Console window

==>[ActivationCreated(0): rule=Hello World;

 tuple=[fid:1:1:org.drools.examples.HelloWorldExample$Message@17cec96]]

[ObjectInserted: handle=[fid:1:1:org.drools.examples.HelloWorldExample$Message@17cec96];

 object=org.drools.examples.HelloWorldExample$Message@17cec96]

[BeforeActivationFired: rule=Hello World;

 tuple=[fid:1:1:org.drools.examples.HelloWorldExample$Message@17cec96]]

==>[ActivationCreated(4): rule=Good Bye;

 tuple=[fid:1:2:org.drools.examples.HelloWorldExample$Message@17cec96]]

Hello World

227

[ObjectUpdated: handle=[fid:1:2:org.drools.examples.HelloWorldExample$Message@17cec96];

 old_object=org.drools.examples.HelloWorldExample$Message@17cec96;

 new_object=org.drools.examples.HelloWorldExample$Message@17cec96]

[AfterActivationFired(0): rule=Hello World]

[BeforeActivationFired: rule=Good Bye;

 tuple=[fid:1:2:org.drools.examples.HelloWorldExample$Message@17cec96]]

[AfterActivationFired(4): rule=Good Bye]

The LHS (after when) section of the rule states that it will be activated for each Message object

inserted into the Working Memory whose status is Message.HELLO. Besides that, two variable

bindings are created: the variable message is bound to the message attribute and the variable m

is bound to the matched Message object itself.

The RHS (after then) or consequence part of the rule is written using the MVEL expression

language, as declared by the rule's attribute dialect. After printing the content of the bound

variable message to System.out, the rule changes the values of the message and status

attributes of the Message object bound to m. This is done MVEL's modify statement, which allows

you to apply a block of assignments in one statement, with the engine being automatically notified

of the changes at the end of the block.

Example 8.7. HelloWorld: rule "Hello World"

rule "Hello World"

 dialect "mvel"

 when

 m : Message(status == Message.HELLO, message : message)

 then

 System.out.println(message);

 modify (m) { message = "Goodbyte cruel world",

 status = Message.GOODBYE };

end

We can set a breakpoint into the DRL, on the modify call, and inspect the Agenda view again

during the execution of the rule's consequence. This time we start the execution via "Debug As"

and "Drools application" and not by running a "Java application":

1. Open the class org.drools.examples.HelloWorld in your Eclipse IDE.

2. Right-click the class and select "Debug as..." and then "Drools application".

Now we can see that the other rule "Good Bye", which uses the Java dialect, is activated and

placed on the Agenda.

Chapter 8. Examples

228

Figure 8.2. Hello World: rule "Hello World" Agenda View

The "Good Bye" rule, which specifies the "java" dialect, is similar to the "Hello World" rule except

that it matches Message objects whose status is Message.GOODBYE.

Example 8.8. HelloWorld: rule "Good Bye"

rule "Good Bye"

 dialect "java"

State Example

229

 when

 Message(status == Message.GOODBYE, message : message)

 then

 System.out.println(message);

end

Remember the Java code where we used the KnowledgeRuntimeLoggerFactory method

newFileLogger to create a KnowledgeRuntimeLogger and called logger.close() at the end.

This created an audit log file that can be shown in the Audit view. We use the Audit view in many

of the examples to demostrate the example execution flow. In the view screen shot below we

can see that the object is inserted, which creates an activation for the "Hello World" rule; the

activation is then executed which updates the Message object causing the "Good Bye" rule to

activate; finally the "Good Bye" rule also executes. Selecting an event in the Audit view highlights

the origin event in green; therefore the "Activation created" event is highlighted in green as the

origin of the "Activation executed" event.

Figure 8.3. Hello World: Audit View

8.3. State Example

This example is implemented in three different versions to demonstrate different ways of

implementing the same basic behavior: forward chaining, i.e., the ability the engine has to

evaluate, activate and fire rules in sequence, based on changes on the facts in the Working

Memory.

8.3.1. Understanding the State Example

Name: State Example

Main class: org.drools.examples.StateExampleUsingSalience

Type: Java application

Rules file: StateExampleUsingSalience.drl

Objective: Demonstrates basic rule use

 and Conflict Resolution for rule firing priority.

Each State class has fields for its name and its current state (see the class

org.drools.examples.State). The two possible states for each objects are:

Chapter 8. Examples

230

• NOTRUN

• FINISHED

Example 8.9. State Class

public class State {

 public static final int NOTRUN = 0;

 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =

 new PropertyChangeSupport(this);

 private String name;

 private int state;

 ... setters and getters go here...

}

Ignoring the PropertyChangeSupport, which will be explained later, we see the creation of four

State objects named A, B, C and D. Initially their states are set to NOTRUN, which is default for the

used constructor. Each instance is asserted in turn into the Session and then fireAllRules()

is called.

Example 8.10. Salience State: Execution

State a = new State("A");

State b = new State("B");

State c = new State("C");

final State d = new State("D");

// By setting dynamic to TRUE, Drools will use JavaBean

// PropertyChangeListeners so you don't have to call modify or update().

boolean dynamic = true;

session.insert(a, dynamic);

session.insert(b, dynamic);

session.insert(c, dynamic);

session.insert(d, dynamic);

session.fireAllRules();

session.dispose(); // Stateful rule session must always be disposed when finished

Understanding the State Example

231

To execute the application:

1. Open the class org.drools.examples.StateExampleUsingSalience in your Eclipse IDE.

2. Right-click the class and select "Run as..." and then "Java application"

You will see the following output in the Eclipse console window:

Example 8.11. Salience State: Console Output

A finished

B finished

C finished

D finished

There are four rules in total. First, the Bootstrap rule fires, setting A to state FINISHED, which

then causes B to change its state to FINISHED. C and D are both dependent on B, causing a

conflict which is resolved by the salience values. Let's look at the way this was executed.

The best way to understand what is happening is to use the Audit Logging feature to graphically

see the results of each operation. To view the Audit log generated by a run of this example:

1. If the Audit View is not visible, click on "Window" and then select "Show View", then "Other..."

and "Drools" and finally "Audit View".

2. In the "Audit View" click the "Open Log" button and select the file "<drools-examples-drl-dir>/

log/state.log".

After that, the "Audit view" will look like the following screenshot:

Chapter 8. Examples

232

Figure 8.4. Salience State Example Audit View

Reading the log in the "Audit View", top to bottom, we see every action and the corresponding

changes in the Working Memory. This way we observe that the assertion of the State object A

in the state NOTRUN activates the Bootstrap rule, while the assertions of the other State objects

have no immediate effect.

Example 8.12. Salience State: Rule "Bootstrap"

rule Bootstrap

 when

 a : State(name == "A", state == State.NOTRUN)

 then

 System.out.println(a.getName() + " finished");

 a.setState(State.FINISHED);

end

The execution of rule Bootstrap changes the state of A to FINISHED, which, in turn, activates rule

"A to B".

Example 8.13. Salience State: Rule "A to B"

rule "A to B"

 when

Understanding the State Example

233

 State(name == "A", state == State.FINISHED)

 b : State(name == "B", state == State.NOTRUN)

 then

 System.out.println(b.getName() + " finished");

 b.setState(State.FINISHED);

end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both, rules "B

to C" and "B to D", placing their Activations onto the Agenda. From this moment on, both rules

may fire and, therefore, they are said to be "in conflict". The conflict resolution strategy allows the

engine's Agenda to decide which rule to fire. As rule "B to C" has the higher salience value (10

versus the default salience value of 0), it fires first, modifying object C to state FINISHED. The

Audit view shown above reflects the modification of the State object in the rule "A to B", which

results in two activations being in conflict. The Agenda view can also be used to investigate the

state of the Agenda, with debug points being placed in the rules themselves and the Agenda view

opened. The screen shot below shows the breakpoint in the rule "A to B" and the state of the

Agenda with the two conflicting rules.

Chapter 8. Examples

234

Figure 8.5. State Example Agenda View

Understanding the State Example

235

Example 8.14. Salience State: Rule "B to C"

rule "B to C"

 salience 10

 when

 State(name == "B", state == State.FINISHED)

 c : State(name == "C", state == State.NOTRUN)

 then

 System.out.println(c.getName() + " finished");

 c.setState(State.FINISHED);

end

Rule "B to D" fires last, modifying object D to state FINISHED.

Example 8.15. Salience State: Rule "B to D"

rule "B to D"

 when

 State(name == "B", state == State.FINISHED)

 d : State(name == "D", state == State.NOTRUN)

 then

 System.out.println(d.getName() + " finished");

 d.setState(State.FINISHED);

end

There are no more rules to execute and so the engine stops.

Another notable concept in this example is the use of dynamic facts, based on

PropertyChangeListener objects. As described in the documentation, in order for the engine

to see and react to changes of fact properties, the application must tell the engine that changes

occurred. This can be done explicitly in the rules by using the modify statement, or implicitly

by letting the engine know that the facts implement PropertyChangeSupport as defined by

the JavaBeans specification. This example demonstrates how to use PropertyChangeSupport

to avoid the need for explicit modify statements in the rules. To make use of this

feature, ensure that your facts implement PropertyChangeSupport, the same way the class

org.drools.example.State does, and use the following code to insert the facts into the Working

Memory:

Example 8.16. Inserting a Dynamic Fact

// By setting dynamic to TRUE, Drools will use JavaBean

// PropertyChangeListeners so you don't have to call modify or update().

Chapter 8. Examples

236

final boolean dynamic = true;

session.insert(fact, dynamic);

When using PropertyChangeListener objects, each setter must implement a little extra code for

the notification. Here is the setter for state in the class org.drools.examples:

:

Example 8.17. Setter Example with PropertyChangeSupport

public void setState(final int newState) {

 int oldState = this.state;

 this.state = newState;

 this.changes.firePropertyChange("state",

 oldState,

 newState);

}

There are two other classes in this example: StateExampleUsingAgendGroup and

StateExampleWithDynamicRules. Both execute from A to B to C to D, as just shown. The

StateExampleUsingAgendGroup uses agenda-groups to control the rule conflict and which one

fires first. StateExampleWithDynamicRules shows how an additional rule can be added to an

already running Working Memory with all the existing data applying to it at runtime.

Agenda groups are a way to partition the Agenda into groups and to control which groups can

execute. By default, all rules are in the agenda group "MAIN". The "agenda-group" attribute lets

you specify a different agenda group for the rule. Initially, a Working Memory has its focus on the

Agenda group "MAIN". A group's rules will only fire when the group receives the focus. This can be

achieved either ny using the method by setFocus() or the rule attribute auto-focus. "auto-focus"

means that the rule automatically sets the focus to its agenda group when the rule is matched and

activated. It is this "auto-focus" that enables rule "B to C" to fire before "B to D".

Example 8.18. Agenda Group State Example: Rule "B to C"

rule "B to C"

 agenda-group "B to C"

 auto-focus true

 when

 State(name == "B", state == State.FINISHED)

 c : State(name == "C", state == State.NOTRUN)

 then

 System.out.println(c.getName() + " finished");

Understanding the State Example

237

 c.setState(State.FINISHED);

 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();

end

The rule "B to C" calls setFocus() on the agenda group "B to D", allowing its active rules to fire,

which allows the rule "B to D" to fire.

Example 8.19. Agenda Group State Example: Rule "B to D"

rule "B to D"

 agenda-group "B to D"

 when

 State(name == "B", state == State.FINISHED)

 d : State(name == "D", state == State.NOTRUN)

 then

 System.out.println(d.getName() + " finished");

 d.setState(State.FINISHED);

end

The example StateExampleWithDynamicRules adds another rule to the Rule Base after

fireAllRules(). The added rule is just another state transition.

Example 8.20. Dynamic State Example: Rule "D to E"

rule "D to E"

 when

 State(name == "D", state == State.FINISHED)

 e : State(name == "E", state == State.NOTRUN)

 then

 System.out.println(e.getName() + " finished");

 e.setState(State.FINISHED);

end

This produces the following expected output:

Example 8.21. Dynamic Sate Example Output

A finished

B finished

C finished

D finished

Chapter 8. Examples

238

E finished

8.4. Fibonacci Example

Name: Fibonacci

Main class: org.drools.examples.FibonacciExample

Type: Java application

Rules file: Fibonacci.drl

Objective: Demonstrates Recursion,

 the CE not and cross product matching

The Fibonacci Numbers (see http://en.wikipedia.org/wiki/Fibonacci_number) discovered by

Leonardo of Pisa (see http://en.wikipedia.org/wiki/Fibonacci) is a sequence that starts with 0 and

1. The next Fibonacci number is obtained by adding the two preceding Fibonacci numbers. The

Fibonacci sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765, 10946,... The Fibonacci Example demonstrates recursion and conflict

resolution with salience values.

The single fact class Fibonacci is used in this example. It has two fields, sequence and value.

The sequence field is used to indicate the position of the object in the Fibonacci number sequence.

The value field shows the value of that Fibonacci object for that sequence position, using -1 to

indicate a value that still needs to be computed.

Example 8.22. Fibonacci Class

public static class Fibonacci {

 private int sequence;

 private long value;

 public Fibonacci(final int sequence) {

 this.sequence = sequence;

 this.value = -1;

 }

 ... setters and getters go here...

}

Execute the example:

1. Open the class org.drools.examples.FibonacciExample in your Eclipse IDE.

2. Right-click the class and select "Run as..." and then "Java application"

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci

Fibonacci Example

239

Eclipse shows the following output in its console window (with "...snip..." indicating lines that were

removed to save space):

Example 8.23. Fibonacci Example: Console Output

recurse for 50

recurse for 49

recurse for 48

recurse for 47

...snip...

recurse for 5

recurse for 4

recurse for 3

recurse for 2

1 == 1

2 == 1

3 == 2

4 == 3

5 == 5

6 == 8

...snip...

47 == 2971215073

48 == 4807526976

49 == 7778742049

50 == 12586269025

To kick this off from Java we only insert a single Fibonacci object, with a sequence field of 50.

A recursive rule is then used to insert the other 49 Fibonacci objects. This example doesn't

use PropertyChangeSupport. It uses the MVEL dialect, which means we can use the modify

keyword, which allows a block setter action which also notifies the engine of changes.

Example 8.24. Fibonacci Example: Execution

ksession.insert(new Fibonacci(50));

ksession.fireAllRules();

The rule Recurse is very simple. It matches each asserted Fibonacci object with a value of -1,

creating and asserting a new Fibonacci object with a sequence of one less than the currently

matched object. Each time a Fibonacci object is added while the one with a sequence field equal

to 1 does not exist, the rule re-matches and fires again. The not conditional element is used to

stop the rule's matching once we have all 50 Fibonacci objects in memory. The rule also has a

Chapter 8. Examples

240

salience value, because we need to have all 50 Fibonacci objects asserted before we execute

the Bootstrap rule.

Example 8.25. Fibonacci Example: Rule "Recurse"

rule Recurse

 salience 10

 when

 f : Fibonacci (value == -1)

 not (Fibonacci (sequence == 1))

 then

 insert(new Fibonacci(f.sequence - 1));

 System.out.println("recurse for " + f.sequence);

end

The Audit view shows the original assertion of the Fibonacci object with a sequence field of 50,

done from Java code. From there on, the Audit view shows the continual recursion of the rule,

where each asserted Fibonacci object causes the Recurse rule to become activated and to fire

again.

Figure 8.6. Fibonacci Example: "Recurse" Audit View 1

Fibonacci Example

241

When a Fibonacci object with a sequence field of 2 is asserted the "Bootstrap" rule is matched

and activated along with the "Recurse" rule. Note the multi-restriction on field sequence, testing

for equality with 1 or 2.

Example 8.26. Fibonacci Example: Rule "Bootstrap"

rule Bootstrap

 when

 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction

 then

 modify (f){ value = 1 };

 System.out.println(f.sequence + " == " + f.value);

end

At this point the Agenda looks as shown below. However, the "Bootstrap" rule does not fire

because the "Recurse" rule has a higher salience.

Figure 8.7. Fibonacci Example: "Recurse" Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted the Bootstrap rule is matched again,

causing two activations for this rule. Note that the "Recurse" rule does not match and activate

Chapter 8. Examples

242

because the not conditional element stops the rule's matching as soon as a Fibonacci object

with a sequence of 1 exists.

Figure 8.8. Fibonacci Example: "Recurse" Agenda View 2

Once we have two Fibonacci objects with values not equal to -1 the "Calculate" rule is able

to match. It was the "Bootstrap" rule that set the objects with sequence 1 and 2 to values of

1. At this point we have 50 Fibonacci objects in the Working Memory. Now we need to select

a suitable triple to calculate each of their values in turn. Using three Fibonacci patterns in a

rule without field constraints to confine the possible cross products would result in 50x49x48

possible combinations, leading to about 125,000 possible rule firings, most of them incorrect. The

"Calculate" rule uses field constraints to correctly constraint the thee Fibonacci patterns in the

correct order; this technique is called cross product matching. The first pattern finds any Fibonacci

with a value != -1 and binds both the pattern and the field. The second Fibonacci does this, too,

but it adds an additional field constraint to ensure that its sequence is greater by one than the

Fibonacci bound to f1. When this rule fires for the first time, we know that only sequences 1

and 2 have values of 1, and the two constraints ensure that f1 references sequence 1 and f2

references sequence 2. The final pattern finds the Fibonacci with a value equal to -1 and with a

sequence one greater than f2. At this point, we have three Fibonacci objects correctly selected

from the available cross products, and we can calculate the value for the third Fibonacci object

that's bound to f3.

Fibonacci Example

243

Example 8.27. Fibonacci Example: Rule "Calculate"

rule Calculate

 when

 // Bind f1 and s1

 f1 : Fibonacci(s1 : sequence, value != -1)

 // Bind f2 and v2; refer to bound variable s1

 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)

 // Bind f3 and s3; alternative reference of f2.sequence

 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)

 then

 // Note the various referencing rechniques.

 modify (f3) { value = f1.value + v2 };

 System.out.println(s3 + " == " + f3.value);

end

The modify statement updated the value of the Fibonacci object bound to f3. This means we

now have another new Fibonacci object with a value not equal to -1, which allows the "Calculate"

rule to rematch and calculate the next Fibonacci number. The Audit view below shows how the

firing of the last "Bootstrap" modifies the Fibonacci object, enabling the "Calculate" rule to match,

which then modifies another Fibonacci object allowing the "Calculate" rule to match again. This

continues till the value is set for all Fibonacci objects.

Chapter 8. Examples

244

Figure 8.9. Fibonacci Example: "Bootstrap" Audit View

8.5. Banking Tutorial

Name: BankingTutorial

Main class: org.drools.tutorials.banking.Example*.java

Type: Java application

Rules file: org.drools.tutorials.banking.*.drl

Banking Tutorial

245

Objective: Demonstrate pattern matching, basic sorting and calculation

 rules.

This tutorial demonstrates the process of developing a complete personal banking application to

handle credits and debits on multiple accounts. It uses a set of design patterns that have been

created for the process.

The class RuleRunner is a simple harness to execute one or more DRL files against a set of data.

It compiles the Packages and creates the Knowledge Base for each execution, allowing us to

easily execute each scenario and inspect the outputs. In reality this is not a good solution for a

production system, where the Knowledge Base should be built just once and cached, but for the

purposes of this tutorial it shall suffice.

Example 8.28. Banking Tutorial: RuleRunner

public class RuleRunner {

 public RuleRunner() {

 }

 public void runRules(String[] rules,

 Object[] facts) throws Exception {

 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 for (int i = 0; i < rules.length; i++) {

 String ruleFile = rules[i];

 System.out.println("Loading file: " + ruleFile);

 kbuilder.add(ResourceFactory.newClassPathResource(ruleFile,

 RuleRunner.class),

 ResourceType.DRL);

 }

 Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();

 kbase.addKnowledgePackages(pkgs);

 StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

 for (int i = 0; i < facts.length; i++) {

 Object fact = facts[i];

 System.out.println("Inserting fact: " + fact);

 ksession.insert(fact);

 }

 ksession.fireAllRules();

Chapter 8. Examples

246

 }

}

The first of our sample Java classes loads and executes a single DRL file, Example.drl, but

without inserting any data.

Example 8.29. Banking Tutorial : Java Example1

public class Example1 {

 public static void main(String[] args) throws Exception {

 new RuleRunner().runRules(new String[] { "Example1.drl" },

 new Object[0]);

 }

}

The first simple rule to execute has a single eval condition that will alway be true, so that this rule

will match and fire, once, after the start.

Example 8.30. Banking Tutorial: Rule in Example1.drl

rule "Rule 01"

 when

 eval(1==1)

 then

 System.out.println("Rule 01 Works");

endh

The output for the rule is below, showing that the rule matches and executes the single print

statement.

Example 8.31. Banking Tutorial: Output of Example1.java

Loading file: Example1.drl

Rule 01 Works

The next step is to assert some simple facts and print them out.

Example 8.32. Banking Tutorial: Java Example2

public class Example2 {

Banking Tutorial

247

 public static void main(String[] args) throws Exception {

 Number[] numbers = new Number[] {wrap(3), wrap(1), wrap(4), wrap(1), wrap(5)};

 new RuleRunner().runRules(new String[] { "Example2.drl" },

 numbers);

 }

 private static Integer wrap(int i) {

 return new Integer(i);

 }

}

This doesn’t use any specific facts but instead asserts a set of java.lang.Integer objects. This

is not considered "best practice" as a number is not a useful fact, but we use it here to demonstrate

basic techniques before more complexity is added.

Now we will create a simple rule to print out these numbers.

Example 8.33. Banking Tutorial: Rule in Example2.drl

rule "Rule 02"

 when

 Number($intValue : intValue)

 then

 System.out.println("Number found with value: " + $intValue);

end

Once again, this rule does nothing special. It identifies any facts that are Number objects and prints

out the values. Notice the use of the abstract class Number: we inserted Integer objects but we

now look for any kind of number. The pattern matching engine is able to match interfaces and

superclasses of asserted objects.

The output shows the DRL being loaded, the facts inserted and then the matched and fired rules.

We can see that each inserted number is matched and fired and thus printed.

Example 8.34. Banking Tutorial: Output of Example2.java

Loading file: Example2.drl

Inserting fact: 3

Inserting fact: 1

Inserting fact: 4

Inserting fact: 1

Inserting fact: 5

Number found with value: 5

Chapter 8. Examples

248

Number found with value: 1

Number found with value: 4

Number found with value: 1

Number found with value: 3

There are certainly many better ways to sort numbers than using rules, but since we will need to

apply some cashflows in date order when we start looking at banking rules we'll develop simple

rule based sorting technique.

Example 8.35. Banking Tutorial: Example3.java

public class Example3 {

 public static void main(String[] args) throws Exception {

 Number[] numbers = new Number[] {wrap(3), wrap(1), wrap(4), wrap(1), wrap(5)};

 new RuleRunner().runRules(new String[] { "Example3.drl" },

 numbers);

 }

 private static Integer wrap(int i) {

 return new Integer(i);

 }

}

Again we insert our Integer objects, but this time the rule is slightly different:

Example 8.36. Banking Tutorial: Rule in Example3.drl

rule "Rule 03"

 when

 $number : Number()

 not Number(intValue < $number.intValue)

 then

 System.out.println("Number found with value: " + $number.intValue());

 retract($number);

end

The first line of the rule identifies a Number and extracts the value. The second line ensures that

there does not exist a smaller number than the one found by the first pattern. We might expect

to match only one number - the smallest in the set. However, the retraction of the number after it

has been printed means that the smallest number has been removed, revealing the next smallest

number, and so on.

Banking Tutorial

249

The resulting output shows that the numbers are now sorted numerically.

Example 8.37. Banking Tutorial: Output of Example3.java

Loading file: Example3.drl

Inserting fact: 3

Inserting fact: 1

Inserting fact: 4

Inserting fact: 1

Inserting fact: 5

Number found with value: 1

Number found with value: 1

Number found with value: 3

Number found with value: 4

Number found with value: 5

We are ready to start moving towards our personal accounting rules. The first step is to create

a Cashflow object.

Example 8.38. Banking Tutorial: Class Cashflow

public class Cashflow {

 private Date date;

 private double amount;

 public Cashflow() {

 }

 public Cashflow(Date date, double amount) {

 this.date = date;

 this.amount = amount;

 }

 public Date getDate() {

 return date;

 }

 public void setDate(Date date) {

 this.date = date;

 }

 public double getAmount() {

 return amount;

Chapter 8. Examples

250

 }

 public void setAmount(double amount) {

 this.amount = amount;

 }

 public String toString() {

 return "Cashflow[date=" + date + ",amount=" + amount + "]";

 }

}

Class Cashflow has two simple attributes, a date and an amount. (Note that using the type double

for monetary units is generally not a good idea because floating point numbers cannot represent

most numbers accurately.) There is also an overloaded constructor to set the values, and a method

toString to print a cashflow. The Java code of Example4.java inserts five Cashflow objects,

with varying dates and amounts.

Example 8.39. Banking Tutorial: Example4.java

public class Example4 {

 public static void main(String[] args) throws Exception {

 Object[] cashflows = {

 new Cashflow(new SimpleDate("01/01/2007"), 300.00),

 new Cashflow(new SimpleDate("05/01/2007"), 100.00),

 new Cashflow(new SimpleDate("11/01/2007"), 500.00),

 new Cashflow(new SimpleDate("07/01/2007"), 800.00),

 new Cashflow(new SimpleDate("02/01/2007"), 400.00),

 };

 new RuleRunner().runRules(new String[] { "Example4.drl" },

 cashflows);

 }

}

The convenience class SimpleDate extends java.util.Date, providing a constructor taking a

String as input and defining a date format. The code is listed below

Example 8.40. Banking Tutorial: Class SimpleDate

public class SimpleDate extends Date {

 private static final SimpleDateFormat format = new SimpleDateFormat("dd/MM/yyyy");

Banking Tutorial

251

 public SimpleDate(String datestr) throws Exception {

 setTime(format.parse(datestr).getTime());

 }

}

Now, let’s look at Example4.drl to see how we print the sorted Cashflow objects:

Example 8.41. Banking Tutorial: Rule in Example4.drl

rule "Rule 04"

 when

 $cashflow : Cashflow($date : date, $amount : amount)

 not Cashflow(date < $date)

 then

 System.out.println("Cashflow: "+$date+" :: "+$amount);

 retract($cashflow);

end

Here, we identify a Cashflow and extract the date and the amount. In the second line of the rule

we ensure that there is no Cashflow with an earlier date than the one found. In the consequence,

we print the Cashflow that satisfies the rule and then retract it, making way for the next earliest

Cashflow. So, the output we generate is:

Example 8.42. Banking Tutorial: Output of Example4.java

Loading file: Example4.drl

Inserting fact: Cashflow[date=Mon Jan 01 00:00:00 GMT 2007,amount=300.0]

Inserting fact: Cashflow[date=Fri Jan 05 00:00:00 GMT 2007,amount=100.0]

Inserting fact: Cashflow[date=Thu Jan 11 00:00:00 GMT 2007,amount=500.0]

Inserting fact: Cashflow[date=Sun Jan 07 00:00:00 GMT 2007,amount=800.0]

Inserting fact: Cashflow[date=Tue Jan 02 00:00:00 GMT 2007,amount=400.0]

Cashflow: Mon Jan 01 00:00:00 GMT 2007 :: 300.0

Cashflow: Tue Jan 02 00:00:00 GMT 2007 :: 400.0

Cashflow: Fri Jan 05 00:00:00 GMT 2007 :: 100.0

Cashflow: Sun Jan 07 00:00:00 GMT 2007 :: 800.0

Cashflow: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

Next, we extend our Cashflow, resulting in a TypedCashflow which can be a credit or a debit

operation. (Normally, we would just add this to the Cashflow type, but we use extension to keep

the previous version of the class intact.)

Chapter 8. Examples

252

Example 8.43. Banking Tutorial: Class TypedCashflow

public class TypedCashflow extends Cashflow {

 public static final int CREDIT = 0;

 public static final int DEBIT = 1;

 private int type;

 public TypedCashflow() {

 }

 public TypedCashflow(Date date, int type, double amount) {

 super(date, amount);

 this.type = type;

 }

 public int getType() {

 return type;

 }

 public void setType(int type) {

 this.type = type;

 }

 public String toString() {

 return "TypedCashflow[date=" + getDate() +

 ",type=" + (type == CREDIT ? "Credit" : "Debit") +

 ",amount=" + getAmount() + "]";

 }

}

There are lots of ways to improve this code, but for the sake of the example this will do.

Now let's create Example5, a class for running our code.

Example 8.44. Banking Tutorial: Example5.java

public class Example5 {

 public static void main(String[] args) throws Exception {

 Object[] cashflows = {

 new TypedCashflow(new SimpleDate("01/01/2007"),

 TypedCashflow.CREDIT, 300.00),

 new TypedCashflow(new SimpleDate("05/01/2007"),

Banking Tutorial

253

 TypedCashflow.CREDIT, 100.00),

 new TypedCashflow(new SimpleDate("11/01/2007"),

 TypedCashflow.CREDIT, 500.00),

 new TypedCashflow(new SimpleDate("07/01/2007"),

 TypedCashflow.DEBIT, 800.00),

 new TypedCashflow(new SimpleDate("02/01/2007"),

 TypedCashflow.DEBIT, 400.00),

 };

 new RuleRunner().runRules(new String[] { "Example5.drl" },

 cashflows);

 }

}

Here, we simply create a set of Cashflow objects which are either credit or debit operations. We

supply them and Example5.drl to the RuleEngine.

Now, let’s look at a rule printing the sorted Cashflow objects.

Example 8.45. Banking Tutorial: Rule in Example5.drl

rule "Rule 05"

 when

 $cashflow : TypedCashflow($date : date,

 $amount : amount,

 type == TypedCashflow.CREDIT)

 not TypedCashflow(date < $date,

 type == TypedCashflow.CREDIT)

 then

 System.out.println("Credit: "+$date+" :: "+$amount);

 retract($cashflow);

end

Here, we identify a Cashflow fact with a type of CREDIT and extract the date and the amount. In

the second line of the rule we ensure that there is no Cashflow of the same type with an earlier

date than the one found. In the consequence, we print the cashflow satisfying the patterns and

then retract it, making way for the next earliest cashflow of type CREDIT.

So, the output we generate is

Example 8.46. Banking Tutorial: Output of Example5.java

Loading file: Example5.drl

Chapter 8. Examples

254

Inserting fact: TypedCashflow[date=Mon Jan 01 00:00:00 GMT

 2007,type=Credit,amount=300.0]

Inserting fact: TypedCashflow[date=Fri Jan 05 00:00:00 GMT

 2007,type=Credit,amount=100.0]

Inserting fact: TypedCashflow[date=Thu Jan 11 00:00:00 GMT

 2007,type=Credit,amount=500.0]

Inserting fact: TypedCashflow[date=Sun Jan 07 00:00:00 GMT

 2007,type=Debit,amount=800.0]

Inserting fact: TypedCashflow[date=Tue Jan 02 00:00:00 GMT

 2007,type=Debit,amount=400.0]

Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0

Credit: Fri Jan 05 00:00:00 GMT 2007 :: 100.0

Credit: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

Continuing our banking exercise, we are now going to process both credits and debits on two bank

accounts, calculating the account balance. In order to do this, we create two separate Account

objects and inject them into the Cashflows objects before passing them to the Rule Engine. The

reason for this is to provide easy access to the correct account without having to resort to helper

classes. Let’s take a look at the Account class first. This is a simple Java object with an account

number and balance:

Example 8.47. Banking Tutorial: Class Account

public class Account {

 private long accountNo;

 private double balance = 0;

 public Account() {

 }

 public Account(long accountNo) {

 this.accountNo = accountNo;

 }

 public long getAccountNo() {

 return accountNo;

 }

 public void setAccountNo(long accountNo) {

 this.accountNo = accountNo;

 }

 public double getBalance() {

 return balance;

 }

Banking Tutorial

255

 public void setBalance(double balance) {

 this.balance = balance;

 }

 public String toString() {

 return "Account[" + "accountNo=" + accountNo + ",balance=" + balance + "]";

 }

}

Now let’s extend our TypedCashflow, resulting in AllocatedCashflow, to include an Account

reference.

Example 8.48. Banking Tutorial: Class AllocatedCashflow

public class AllocatedCashflow extends TypedCashflow {

 private Account account;

 public AllocatedCashflow() {

 }

 public AllocatedCashflow(Account account, Date date, int type, double amount) {

 super(date, type, amount);

 this.account = account;

 }

 public Account getAccount() {

 return account;

 }

 public void setAccount(Account account) {

 this.account = account;

 }

 public String toString() {

 return "AllocatedCashflow[" +

 "account=" + account +

 ",date=" + getDate() +

 ",type=" + (getType() == CREDIT ? "Credit" : "Debit") +

 ",amount=" + getAmount() + "]";

 }

}

Chapter 8. Examples

256

The Java code of Example5.java creates two Account objects and passes one of them into each

cashflow, in the constructor call.

Example 8.49. Banking Tutorial: Example5.java

public class Example6 {

 public static void main(String[] args) throws Exception {

 Account acc1 = new Account(1);

 Account acc2 = new Account(2);

 Object[] cashflows = {

 new AllocatedCashflow(acc1,new SimpleDate("01/01/2007"),

 TypedCashflow.CREDIT, 300.00),

 new AllocatedCashflow(acc1,new SimpleDate("05/02/2007"),

 TypedCashflow.CREDIT, 100.00),

 new AllocatedCashflow(acc2,new SimpleDate("11/03/2007"),

 TypedCashflow.CREDIT, 500.00),

 new AllocatedCashflow(acc1,new SimpleDate("07/02/2007"),

 TypedCashflow.DEBIT, 800.00),

 new AllocatedCashflow(acc2,new SimpleDate("02/03/2007"),

 TypedCashflow.DEBIT, 400.00),

 new AllocatedCashflow(acc1,new SimpleDate("01/04/2007"),

 TypedCashflow.CREDIT, 200.00),

 new AllocatedCashflow(acc1,new SimpleDate("05/04/2007"),

 TypedCashflow.CREDIT, 300.00),

 new AllocatedCashflow(acc2,new SimpleDate("11/05/2007"),

 TypedCashflow.CREDIT, 700.00),

 new AllocatedCashflow(acc1,new SimpleDate("07/05/2007"),

 TypedCashflow.DEBIT, 900.00),

 new AllocatedCashflow(acc2,new SimpleDate("02/05/2007"),

 TypedCashflow.DEBIT, 100.00)

 };

 new RuleRunner().runRules(new String[] { "Example6.drl" },

 cashflows);

 }

}

Now, let’s look at the rule in Example6.drl to see how we apply each cashflow in date order and

calculate and print the balance.

Banking Tutorial

257

Example 8.50. Banking Tutorial: Rule in Example6.drl

rule "Rule 06 - Credit"

 when

 $cashflow : AllocatedCashflow($account : account,

 $date : date,

 $amount : amount,

 type == TypedCashflow.CREDIT)

 not AllocatedCashflow(account == $account, date < $date)

 then

 System.out.println("Credit: " + $date + " :: " + $amount);

 $account.setBalance($account.getBalance()+$amount);

 System.out.println("Account: " + $account.getAccountNo() +

 " - new balance: " + $account.getBalance());

 retract($cashflow);

end

rule "Rule 06 - Debit"

 when

 $cashflow : AllocatedCashflow($account : account,

 $date : date,

 $amount : amount,

 type == TypedCashflow.DEBIT)

 not AllocatedCashflow(account == $account, date < $date)

 then

 System.out.println("Debit: " + $date + " :: " + $amount);

 $account.setBalance($account.getBalance() - $amount);

 System.out.println("Account: " + $account.getAccountNo() +

 " - new balance: " + $account.getBalance());

 retract($cashflow);

end

Although we have separate rules for credits and debits, but we do not specify a type when checking

for earlier cashflows. This is so that all cashflows are applied in date order, regardless of the

cashflow type. In the conditions we identify the account to work with, and in the consequences

we update it with the cashflow amount.

Example 8.51. Banking Tutorial: Output of Example6.java

Loading file: Example6.drl

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Jan 01

 00:00:00 GMT 2007,type=Credit,amount=300.0]

Chapter 8. Examples

258

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Feb 05

 00:00:00 GMT 2007,type=Credit,amount=100.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Sun Mar 11

 00:00:00 GMT 2007,type=Credit,amount=500.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Wed Feb

 07 00:00:00 GMT 2007,type=Debit,amount=800.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri Mar 02

 00:00:00 GMT 2007,type=Debit,amount=400.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Sun Apr 01

 00:00:00 BST 2007,type=Credit,amount=200.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Thu Apr 05

 00:00:00 BST 2007,type=Credit,amount=300.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri May 11

 00:00:00 BST 2007,type=Credit,amount=700.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon May

 07 00:00:00 BST 2007,type=Debit,amount=900.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Wed May

 02 00:00:00 BST 2007,type=Debit,amount=100.0]

Debit: Fri Mar 02 00:00:00 GMT 2007 :: 400.0

Account: 2 - new balance: -400.0

Credit: Sun Mar 11 00:00:00 GMT 2007 :: 500.0

Account: 2 - new balance: 100.0

Debit: Wed May 02 00:00:00 BST 2007 :: 100.0

Account: 2 - new balance: 0.0

Credit: Fri May 11 00:00:00 BST 2007 :: 700.0

Account: 2 - new balance: 700.0

Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0

Account: 1 - new balance: 300.0

Credit: Mon Feb 05 00:00:00 GMT 2007 :: 100.0

Account: 1 - new balance: 400.0

Debit: Wed Feb 07 00:00:00 GMT 2007 :: 800.0

Account: 1 - new balance: -400.0

Credit: Sun Apr 01 00:00:00 BST 2007 :: 200.0

Account: 1 - new balance: -200.0

Credit: Thu Apr 05 00:00:00 BST 2007 :: 300.0

Account: 1 - new balance: 100.0

Debit: Mon May 07 00:00:00 BST 2007 :: 900.0

Account: 1 - new balance: -800.0

8.6. Pricing Rule Decision Table Example

The Pricing Rule decision table demonstrates the use of a decision table in a spreadsheet, in

Excel's XLS format, in calculating the retail cost of an insurance policy. The purpose of the provide

Executing the example

259

set of rules is to calculate a base price and a discount for a car driver applying for a specific policy.

The driver's age, history and the policy type all contribute to what the basic premium is, and an

additional chunk of rules deals with refining this with a discount percentage.

Name: Example Policy Pricing

Main class: org.drools.examples.PricingRuleDTExample

Type: Java application

Rules file: ExamplePolicyPricing.xls

Objective: demonstrate spreadsheet-based decision tables.

8.6.1. Executing the example

Open the file PricingRuleDTExample.java and execute it as a Java application. It should

produce the following output in the Console window:

Cheapest possible

BASE PRICE IS: 120

DISCOUNT IS: 20

The code to execute the example follows the usual pattern. The rules are loaded, the facts inserted

and a Stateless Session is created. What is different is how the rules are added.

DecisionTableConfiguration dtableconfiguration =

 KnowledgeBuilderFactory.newDecisionTableConfiguration();

 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",

 getClass());

 kbuilder.add(xlsRes,

 ResourceType.DTABLE,

 dtableconfiguration);

Note the use of the DecisionTableConfiguration object. Its input type is set to

DecisionTableInputType.XLS. If you use the BRMS, all this is of course taken care of for you.

There are two fact types used in this example, Driver and Policy. Both are used with their default

values. The Driver is 30 years old, has had no prior claims and currently has a risk profile of LOW.

The Policy being applied for is COMPREHENSIVE, and it has not yet been approved.

Chapter 8. Examples

260

8.6.2. The decision table

In this decision table, each row is a rule, and each column is a condition or an action.

Figure 8.10. Decision table configuration

Referring to the spreadsheet show above, we have the RuleSet declaration, which provides the

package name. There are also other optional items you can have here, such as Variables for

global variables, and Imports for importing classes. In this case, the namespace of the rules is

the same as the fact classes we are using, so we can omit it.

Moving further down, we can see the RuleTable declaration. The name after this (Pricing bracket)

is used as the prefix for all the generated rules. Below that, we have "CONDITION or ACTION",

indicating the purpose of the column, i.e., whether it forms part of the condition or the consequence

of the rule that will be generated.

You can see that there is a driver, his data spanned across three cells, which means that the

template expressions below it apply to that fact. We observe the driver's age range (which

uses $1 and $2 with comma-separated values), locationRiskProfile, and priorClaims in the

respective columns. In the action columns, we are set the policy base price and log a message.

The decision table

261

Figure 8.11. Base price calculation

In the preceding spreadsheet section, there are broad category brackets, indicated by the

comment in the leftmost column. As we know the details of our drivers and their policies, we can

tell (with a bit of thought) that they should match row number 18, as they have no prior accidents,

and are 30 years old. This gives us a base price of 120.

Figure 8.12. Discount calculation

The above section contains the conditions for the discount we might grant our driver. The discount

results from the Age bracket, the number of prior claims, and the policy type. In our case, the driver

is 30, with no prior claims, and is applying for a COMPREHENSIVE policy, which means we can give

a discount of 20%. Note that this is actually a separate table, but in the same worksheet, so that

different templates apply.

It is important to note that decision tables generate rules. This means they aren't simply top-down

logic, but more a means to capture data resulting in rules. This is a subtle difference that confuses

Chapter 8. Examples

262

some people. The evaluation of the rules is not necessarily in the given order, since all the normal

mechanics of the rule engine still apply.

8.7. Pet Store Example

Name: Pet Store

Main class: org.drools.examples.PetStore

Type: Java application

Rules file: PetStore.drl

Objective: Demonstrate use of Agenda Groups, Global Variables and integration with a GUI,

including callbacks from within the rules

The Pet Store example shows how to integrate Rules with a GUI, in this case a Swing based

desktop application. Within the rules file, it demonstrates how to use Agenda groups and auto-

focus to control which of a set of rules is allowed to fire at any given time. It also illustrates the

mixing of the Java and MVEL dialects within the rules, the use of accumulate functions and the

way of calling Java functions from within the ruleset.

All of the Java code is contained in one file, PetStore.java, defining the following principal

classes (in addition to several classes to handle Swing Events):

• Petstore contains the main() method that we will look at shortly.

• PetStoreUI is responsible for creating and displaying the Swing based GUI. It contains several

smaller classes, mainly for responding to various GUI events such as mouse button clicks.

• TableModel holds the table data. Think of it as a JavaBean that extends the Swing class

AbstractTableModel.

• CheckoutCallback allows the GUI to interact with the Rules.

• Ordershow keeps the items that we wish to buy.

• Purchase stores details of the order and the products we are buying.

• Product is a JavaBean holding details of the product available for purchase, and its price.

Much of the Java code is either plain JavaBeans or Swing-based. Only a few Swing-related points

will be discussed in this section, but a good tutorial about Swing components can be found at

Sun's Swing website, in http://java.sun.com/docs/books/tutorial/uiswing/ [???].

The pieces of Java code in Petstore.java that relate to rules and facts are shown below.

Example 8.52. Creating the PetStore RuleBase in PetStore.main

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

???
???

Pet Store Example

263

kbuilder.add(ResourceFactory.newClassPathResource("PetStore.drl",

 PetStore.class),

 ResourceType.DRL);

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// Create the stock.

Vector<Product> stock = new Vector<Product>();

stock.add(new Product("Gold Fish", 5));

stock.add(new Product("Fish Tank", 25));

stock.add(new Product("Fish Food", 2));

// A callback is responsible for populating the

// Working Memory and for firing all rules.

PetStoreUI ui = new PetStoreUI(stock,

 new CheckoutCallback(kbase));

ui.createAndShowGUI();

The code shown above loads the rules from a DRL file on the classpath. Unlike other examples

where the facts are asserted and fired straight away, this example defers this step to later.

The way it does this is via the second last line where a PetStoreUI object is created using a

constructor accepting the Vector object stock collecting our products, and an instance of the

CheckoutCallback class containing the Rule Base that we have just loaded.

The Java code that fires the rules is within the CheckoutCallBack.checkout() method. This is

triggered (eventually) when the Checkout button is pressed by the user.

Example 8.53. Firing the Rules - extract from CheckoutCallBack.checkout()

public String checkout(JFrame frame, List<Product> items) {

 Order order = new Order();

 // Iterate through list and add to cart

 for (Product p: items) {

 order.addItem(new Purchase(order, p));

 }

 // Add the JFrame to the ApplicationData to allow for user interaction

 StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

 ksession.setGlobal("frame", frame);

 ksession.setGlobal("textArea", this.output);

Chapter 8. Examples

264

 ksession.insert(new Product("Gold Fish", 5));

 ksession.insert(new Product("Fish Tank", 25));

 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 ksession.fireAllRules();

 // Return the state of the cart

 return order.toString();

}

Two items get passed into this method. One is the handle to the JFrame Swing component

surrounding the output text frame, at the bottom of the GUI. The second is a list of order items;

this comes from the TableModel storing the information from the "Table" area at the top right

section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also

contained in the file PetStore.java. Note that it would be possible to refer to the Swing dataset

directly within the rules, but it is better coding practice to do it this way, using simple Java objects.

It means that we are not tied to Swing if we wanted to transform the sample into a Web application.

It is important to note that all state in this example is stored in the Swing components, and that

the rules are effectively stateless. Each time the "Checkout" button is pressed, this code copies

the contents of the Swing TableModel into the Session's Working Memory.

Within this code, there are nine calls to the Working Memory. The first of these creates a new

Working Memory, as a Stateful Knowledge Session from the Knowledge Base. Remember that

we passed in this Knowledge Base when we created the CheckoutCallBack class in the main()

method. The next two calls pass in two objects that we will hold as global variables in the rules:

the Swing text area and the Swing frame used for writing messages.

More inserts put information on products into the Working Memory, as well as the order list. The

final call is the standard fireAllRules(). Next, we look at what this method causes to happen

within the rules file.

Example 8.54. Package, Imports, Globals and Dialect: extract from

PetStore.drl

package org.drools.examples

import org.drools.WorkingMemory

import org.drools.examples.PetStore.Order

import org.drools.examples.PetStore.Purchase

Pet Store Example

265

import org.drools.examples.PetStore.Product

import java.util.ArrayList

import javax.swing.JOptionPane;

import javax.swing.JFrame

global JFrame frame

global javax.swing.JTextArea textArea

The first part of file PetStore.drl contains the standard package and import statements to make

various Java classes available to the rules. New to us are the two globals frame and textArea.

They hold references to the Swing components JFrame and JTextArea components that were

previously passed on by the Java code calling the setGlobal() method. Unlike variables in rules,

which expire as soon as the rule has fired, global variables retain their value for the lifetime of

the Session.

The next extract from the file PetStore.drl contains two functions that are referenced by the

rules that we will look at shortly.

Example 8.55. Java Functions in the Rules: extract from PetStore.drl

function void doCheckout(JFrame frame, WorkingMemory workingMemory) {

 Object[] options = {"Yes",

 "No"};

 int n = JOptionPane.showOptionDialog(frame,

 "Would you like to checkout?",

 "",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.QUESTION_MESSAGE,

 null,

 options,

 options[0]);

 if (n == 0) {

 workingMemory.setFocus("checkout");

 }

}

function boolean requireTank(JFrame frame, WorkingMemory workingMemory, Order order,

 Product fishTank, int total) {

 Object[] options = {"Yes",

 "No"};

Chapter 8. Examples

266

 int n = JOptionPane.showOptionDialog(frame,

 "Would you like to buy a tank for your " + total + " fish?",

 "Purchase Suggestion",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.QUESTION_MESSAGE,

 null,

 options,

 options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "

 + total + " fish? - ");

 if (n == 0) {

 Purchase purchase = new Purchase(order, fishTank);

 workingMemory.insert(purchase);

 order.addItem(purchase);

 System.out.println("Yes");

 } else {

 System.out.println("No");

 }

 return true;

}

Having these functions in the rules file just makes the Pet Store example more compact. In

real life you probably have the functions in a file of their own, within the same rules package,

or as a static method on a standard Java class, and import them, using import function

my.package.Foo.hello.

The purpose of these two functions is:

• doCheckout() displays a dialog asking users whether they wish to checkout. If they do, focus

is set to the checkOut agenda-group, allowing rules in that group to (potentially) fire.

• requireTank() displays a dialog asking users whether they wish to buy a tank. If so, a new

fish tank Product is added to the order list in Working Memory.

We'll see the rules that call these functions later on. The next set of examples are from the Pet

Store rules themselves. The first extract is the one that happens to fire first, partly because it has

the auto-focus attribute set to true.

Example 8.56. Putting items into working memory: extract from PetStore.drl

// Insert each item in the shopping cart into the Working Memory

// Insert each item in the shopping cart into the Working Memory

Pet Store Example

267

rule "Explode Cart"

 agenda-group "init"

 auto-focus true

 salience 10

 dialect "java"

when

 $order : Order(grossTotal == -1)

 $item : Purchase() from $order.items

then

 insert($item);

 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();

 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();

end

This rule matches against all orders that do not yet have their grossTotal calculated . It loops

for each purchase item in that order. Some parts of the "Explode Cart" rule should be familiar:

the rule name, the salience (suggesting the order for the rules being fired) and the dialect set to

"java". There are three new features:

• agenda-group "init" defines the name of the agenda group. In this case, there is only one

rule in the group. However, neither the Java code nor a rule consequence sets the focus to this

group, and therefore it relies on the next attribute for its chance to fire.

• auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a

chance to fire when fireAllRules() is called from the Java code.

• kcontext....setFocus() sets the focus to the "show items" and "evaluate" agenda groups

in turn, permitting their rules to fire. In practice, we loop through all items on the order, inserting

them into memory, then firing the other rules after each insert.

The next two listings show the rules within the "show items" and evaluate agenda groups. We

look at them in the order that they are called.

Example 8.57. Show Items in the GUI - extract from PetStore.drl

rule "Show Items"

 agenda-group "show items"

 dialect "mvel"

when

 $order : Order()

 $p : Purchase(order == $order)

then

 textArea.append($p.product + "\n");

end

Chapter 8. Examples

268

The "show items" agenda-group has only one rule, called "Show Items" (note the difference

in case). For each purchase on the order currently in the Working Memory (or Session), it logs

details to the text area at the bottom of the GUI. The textArea variable used to do this is one of

the global variables we looked at earlier.

The evaluate Agenda group also gains focus from the "Explode Cart" rule listed previously.

This Agenda group has two rules, "Free Fish Food Sample" and "Suggest Tank", shown below.

Example 8.58. Evaluate Agenda Group: extract from PetStore.drl

// Free Fish Food sample when we buy a Gold Fish if we haven't already bought

// Fish Food and don't already have a Fish Food Sample

rule "Free Fish Food Sample"

 agenda-group "evaluate"

 dialect "mvel"

when

 $order : Order()

 not ($p : Product(name == "Fish Food") && Purchase(product == $p))

 not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p))

 exists ($p : Product(name == "Gold Fish") && Purchase(product == $p))

 $fishFoodSample : Product(name == "Fish Food Sample");

then

 System.out.println("Adding free Fish Food Sample to cart");

 purchase = new Purchase($order, $fishFoodSample);

 insert(purchase);

 $order.addItem(purchase);

end

// Suggest a tank if we have bought more than 5 gold fish and don't already have one

rule "Suggest Tank"

 agenda-group "evaluate"

 dialect "java"

when

 $order : Order()

 not ($p : Product(name == "Fish Tank") && Purchase(product == $p))

 ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish"))

 $fishTank : Product(name == "Fish Tank")

then

 requireTank(frame, drools.getWorkingMemory(), $order, $fishTank, $total);

end

The rule "Free Fish Food Sample" will only fire if

• we don't already have any fish food, and

Pet Store Example

269

• we don't already have a free fish food sample, and

• we do have a Gold Fish in our order.

If the rule does fire, it creates a new product (Fish Food Sample), and adds it to the order in

Working Memory.

The rule "Suggest Tank" will only fire if

• we don't already have a Fish Tank in our order, and

• we do have more than 5 Gold Fish Products in our order.

If the rule does fire, it calls the requireTank() function that we looked at earlier (showing a Dialog

to the user, and adding a Tank to the order / working memory if confirmed). When calling the

requireTank() function the rule passes the global frame variable so that the function has a handle

to the Swing GUI.

The next rule we look at is "do checkout".

Example 8.59. Doing the Checkout - extract (6) from PetStore.drl

rule "do checkout"

 dialect "java"

 when

 then

 doCheckout(frame, drools.getWorkingMemory());

end

The rule "do checkout" has no agenda group set and no auto-focus attribute. As such, is is

deemed part of the default (MAIN) agenda group. This group gets focus by default when all the

rules in agenda-groups that explicity had focus set to them have run their course.

There is no LHS to the rule, so the RHS will always call the doCheckout() function. When calling

the doCheckout() function, the rule passes the global frame variable to give the function a handle

to the Swing GUI. As we saw earlier, the doCheckout() function shows a confirmation dialog to

the user. If confirmed, the function sets the focus to the checkout agenda-group, allowing the next

lot of rules to fire.

Example 8.60. Checkout Rules: extract from PetStore.drl

rule "Gross Total"

 agenda-group "checkout"

 dialect "mvel"

Chapter 8. Examples

270

when

 $order : Order(grossTotal == -1)

 Number(total : doubleValue)

 from accumulate(Purchase($price : product.price), sum($price))

then

 modify($order) { grossTotal = total };

 textArea.append("\ngross total=" + total + "\n");

end

rule "Apply 5% Discount"

 agenda-group "checkout"

dialect "mvel"

when

 $order : Order(grossTotal >= 10 && < 20)

then

 $order.discountedTotal = $order.grossTotal * 0.95;

 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");

end

rule "Apply 10% Discount"

 agenda-group "checkout"

 dialect "mvel"

when

 $order : Order(grossTotal >= 20)

then

 $order.discountedTotal = $order.grossTotal * 0.90;

 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");

end

There are three rules in the checkout agenda-group:

• If we haven't already calculated the gross total, Gross Total accumulates the product prices

into a total, puts this total into Working Memory, and displays it via the Swing JTextArea, using

the textArea global variable yet again.

• If our gross total is between 10 and 20, "Apply 5% Discount" calculates the discounted total

and adds it to the Working Memory and displays it in the text area.

• If our gross total is not less than 20, "Apply 10% Discount" calculates the discounted total

and adds it to the Working Memory and displays it in the text area.

Now that we've run through what happens in the code, let's have a look at what happens when

we actually run the code. The file PetStore.java contains a main() method, so that it can be run

Pet Store Example

271

as a standard Java application, either from the command line or via the IDE. This assumes you

have your classpath set correctly. (See the start of the examples section for more information.)

The first screen that we see is the Pet Store Demo. It has a list of available products (top left),

an empty list of selected products (top right), checkout and reset buttons (middle) and an empty

system messages area (bottom).

Figure 8.13. PetStore Demo just after Launch

To get to this point, the following things have happened:

1. The main() method has run and loaded the Rule Base but not yet fired the rules. So far, this

is the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle to the Rule Base, for later use.

3. Various Swing components do their stuff, and the above screen is shown and waits for user

input.

Clicking on various products from the list might give you a screen similar to the one below.

Chapter 8. Examples

272

Figure 8.14. PetStore Demo with Products Selected

Note that no rules code has been fired here. This is only Swing code, listening for mouse click

events, and adding some selected product to the TableModel object for display in the top right

hand section. (As an aside, note that this is a classic use of the Model View Controller design

pattern).

It is only when we press the "Checkout" button that we fire our business rules, in roughly the same

order that we walked through the code earlier.

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for

the click on the "Checkout" button. This inserts the data from the TableModel object (top right

hand side of the GUI), and inserts it into the Session's Working Memory. It then fires the rules.

2. The "Explode Cart" rule is the first to fire, given that it has auto-focus set to true. It loops

through all the products in the cart, ensures that the products are in the Working Memory, and

then gives the "Show Items" and Evaluation agenda groups a chance to fire. The rules in

these groups add the contents of the cart to the text area (at the bottom of the window), decide

whether or not to give us free fish food, and to ask us whether we want to buy a fish tank. This

is shown in the figure below.

Pet Store Example

273

Figure 8.15. Do we want to buy a fish tank?

1. The Do Checkout rule is the next to fire as it (a) No other agenda group currently has focus

and (b) it is part of the default (MAIN) agenda group. It always calls the doCheckout() function

which displays a 'Would you like to Checkout?' Dialog Box.

2. The doCheckout() function sets the focus to the checkout agenda-group, giving the rules in

that group the option to fire.

3. The rules in the the checkout agenda-group display the contents of the cart and apply the

appropriate discount.

4. Swing then waits for user input to either checkout more products (and to cause the rules to fire

again), or to close the GUI - see the figure below.

Chapter 8. Examples

274

Figure 8.16. Petstore Demo after all rules have fired.

We could add more System.out calls to demonstrate this flow of events. The output, as it currently

appears in the Console window, is given in the listing below.

Example 8.61. Console (System.out) from running the PetStore GUI

Adding free Fish Food Sample to cart

SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

8.8. Honest Politician Example

Name: Honest Politician

Main class: org.drools.examples.HonestPoliticianExample

Type: Java application

Rules file: HonestPoliticianExample.drl

Honest Politician Example

275

Objective: Illustrate the concept of "truth maintenance" based on the logical insertion of facts

The Honest Politician example demonstrates truth maintenance with logical assertions. The basic

premise is that an object can only exist while a statement is true. A rule's consequence can logically

insert an object with the insertLogical() method. This means the object will only remain in the

Working Memory as long as the rule that logically inserted it remains true. When the rule is no

longer true the object is automatically retracted.

In this example there is the class Politician, with a name and a boolean value for being honest.

Four politicians with honest state set to true are inserted.

Example 8.62. Class Politician

public class Politician {

 private String name;

 private boolean honest;

 ...

}

Example 8.63. Honest Politician: Execution

Politician blair = new Politician("blair", true);

Politician bush = new Politician("bush", true);

Politician chirac = new Politician("chirac", true);

Politician schroder = new Politician("schroder", true);

ksession.insert(blair);

ksession.insert(bush);

ksession.insert(chirac);

ksession.insert(schroder);

ksession.fireAllRules();

The Console window output shows that, while there is at least one honest politician, democracy

lives. However, as each politician is in turn corrupted by an evil corporation, so that all politicians

become dishonest, democracy is dead.

Example 8.64. Honest Politician: Console Output

Hurrah!!! Democracy Lives

I'm an evil corporation and I have corrupted schroder

Chapter 8. Examples

276

I'm an evil corporation and I have corrupted chirac

I'm an evil corporation and I have corrupted bush

I'm an evil corporation and I have corrupted blair

We are all Doomed!!! Democracy is Dead

As soon as there is at least one honest politician in the Working Memory a new Hope object is

logically asserted. This object will only exist while there is at least one honest politician. As soon

as all politicians are dishonest, the Hope object will be automatically retracted. This rule is given

a salience of 10 to ensure that it fires before any other rule, as at this stage the "Hope is Dead"

rule is actually true.

Example 8.65. Honest Politician: Rule "We have an honest politician"

rule "We have an honest Politician"

 salience 10

 when

 exists(Politician(honest == true))

 then

 insertLogical(new Hope());

end

As soon as a Hope object exists the "Hope Lives" rule matches and fires. It has a salience of 10

so that it takes priority over "Corrupt the Honest".

Example 8.66. Honest Politician: Rule "Hope Lives"

rule "Hope Lives"

 salience 10

 when

 exists(Hope())

 then

 System.out.println("Hurrah!!! Democracy Lives");

end

Now that there is hope and we have, at the start, four honest politicians, we have four activations

for this rule, all in conflict. They will fire in turn, corrupting each politician so that they are no longer

honest. When all four politicians have been corrupted we have no politicians with the property

honest == true. Thus, the rule "We have an honest Politician" is no longer true and the object

it logical inserted (due to the last execution of new Hope()) is automatically retracted.

Honest Politician Example

277

Example 8.67. Honest Politician: Rule "Corrupt the Honest"

rule "Corrupt the Honest"

 when

 politician : Politician(honest == true)

 exists(Hope())

 then

 System.out.println("I'm an evil corporation and I have corrupted " + politician.getName());

 modify (politician) { honest = false };

end

With the Hope object being automatically retracted, via the truth maintenance system, the

conditional element not applied to Hope is no longer true so that the following rule will match and

fire.

Example 8.68. Honest Politician: Rule "Hope is Dead"

rule "Hope is Dead"

 when

 not(Hope())

 then

 System.out.println("We are all Doomed!!! Democracy is Dead");

end

Let's take a look at the Audit trail for this application:

Chapter 8. Examples

278

Figure 8.17. Honest Politician Example Audit View

The moment we insert the first politician we have two activations. The rule "We have an honest

Politician" is activated only once for the first inserted politician because it uses an exists

conditional element, which matches once for any number. The rule "Hope is Dead" is also activated

at this stage, because we have not yet inserted the Hope object. Rule "We have an honest

Politician" fires first, as it has a higher salience than "Hope is Dead", which inserts the Hope object.

(That action is highlighted green.) The insertion of the Hope object activates "Hope Lives" and

de-activates "Hope is Dead"; it also activates "Corrupt the Honest" for each inserted honested

politician. Rule "Hope Lives" executes, printing "Hurrah!!! Democracy Lives". Then, for each

politician, rule "Corrupt the Honest" fires, printing "I'm an evil corporation and I have corrupted X",

where X is the name of the politician, and modifies the politician's honest value to false. When

the last honest politician is corrupted, Hope is automatically retracted, by the truth maintenance

system, as shown by the blue highlighted area. The green highlighted area shows the origin of the

currently selected blue highlighted area. Once the Hope fact is retracted, "Hope is dead" activates

and fires printing "We are all Doomed!!! Democracy is Dead".

8.9. Sudoku Example

Name: Sudoku

Main class: org.drools.examples.sudoku.Main

Type: Java application

Rules file: sudokuSolver.drl, sudokuValidator.drl

Sudoku Overview

279

Objective: Demonstrates the solving of logic problems, and complex pattern matching.

This example demonstrates how Drools can be used to find a solution in a large potential solution

space based on a number of constraints. We use the popular puzzle of Sudoku. This example

also shows how Drools can be integrated into a graphical interface and how callbacks can be used

to interact with a running Drools rules engine in order to update the graphical interface based on

changes in the Working Memory at runtime.

8.9.1. Sudoku Overview

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each

column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9, once, and only

once.

The puzzle setter provides a partially completed grid and the puzzle solver's task is to complete

the grid with these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number it should

be unique in its particular 3x3 zone, row and column.

See Wikipedia [http://en.wikipedia.org/wiki/Sudoku] for a more detailed description.

8.9.2. Running the Example

Download and install drools-examples as described above and then execute java

org.drools.examples.sudoku.Main. This example requires Java 5.

A window will be displayed with a relatively simple partially filled grid.

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku

Chapter 8. Examples

280

Click on the "Solve" button and the Drools-based engine will fill out the remaining values. The

Console window will display detailed information about the rules which are executing to solve the

puzzle in a human readable form.

Rule #3 determined the value at (4,1) could not be 4 as this value already

 exists in the same column at (8,1)

Rule #3 determined the value at (5,5) could not be 2 as this value already

 exists in the same row at (5,6)

Rule #7 determined (3,5) is 2 as this is the only possible cell in the

 column that can have this value

Rule #1 cleared the other PossibleCellValues for (3,5) as a

 ResolvedCellValue of 2 exists for this cell.

Rule #1 cleared the other PossibleCellValues for (3,5) as a

 ResolvedCellValue of 2 exists for this cell.

...

Rule #3 determined the value at (1,1) could not be 1 as this value already

 exists in the same zone at (2,1)

Running the Example

281

Rule #6 determined (1,7) is 1 as this is the only possible cell in the row

 that can have this value

Rule #1 cleared the other PossibleCellValues for (1,7) as a

 ResolvedCellValue of 1 exists for this cell.

Rule #6 determined (1,1) is 8 as this is the only possible cell in the row

 that can have this value

Once all of the activated rules for the solving logic have executed, the engine executes a second

rule base to check that the solution is complete and valid. In this case it is, and the "Solve" button

is disabled and displays a text like "Solved (1052ms)".

The example comes with a number of grids which can be loaded and solved. Click on "File", then

"Samples" and "Medium" to load a more challenging grid. Note that the solve button is enabled

when the new grid is loaded.

Chapter 8. Examples

282

Click on the "Solve" button again to solve this new grid.

Running the Example

283

Now, let us load a Sudoku grid that is deliberately invalid. Click on "File", "Samples" and "!

DELIBERATELY BROKEN!". Note that this grid starts with some issues, for example the value

5 appears twice in the first row.

Chapter 8. Examples

284

Nevertheless, click on the "Solve" button to apply the solving rules to this invalid grid. Note that

the "Solve" button is relabelled to indicate that the resulting solution is invalid.

Running the Example

285

In addition, the validation rule set outputs all of the issues which are discovered to the console.

There are two cells on the same column with the same value at (6,0) and (4,0)

There are two cells on the same column with the same value at (4,0) and (6,0)

There are two cells on the same row with the same value at (2,4) and (2,2)

There are two cells on the same row with the same value at (2,2) and (2,4)

There are two cells on the same row with the same value at (6,3) and (6,8)

There are two cells on the same row with the same value at (6,8) and (6,3)

There are two cells on the same column with the same value at (7,4) and (0,4)

There are two cells on the same column with the same value at (0,4) and (7,4)

There are two cells on the same row with the same value at (0,8) and (0,0)

There are two cells on the same row with the same value at (0,0) and (0,8)

There are two cells on the same column with the same value at (1,2) and (3,2)

There are two cells on the same column with the same value at (3,2) and (1,2)

There are two cells in the same zone with the same value at (6,3) and (7,3)

Chapter 8. Examples

286

There are two cells in the same zone with the same value at (7,3) and (6,3)

There are two cells on the same column with the same value at (7,3) and (6,3)

There are two cells on the same column with the same value at (6,3) and (7,3)

We will look at the solving rule set later in this section, but for the moment we should note that

some theoretically solvable solutions can not be solved by the engine as it stands. Click on "File",

"Samples" and then "Hard 3" to load a sparsely populated grid.

Now click on the "Solve" button and note that the current rules are unable to complete the grid,

even though (if you are a Sudoku aficionado) you may be able to see a way forward with the

solution.

Java Source and Rules Overview

287

At the present time, the solving functionality has been achieved by the use of ten rules. This rule set

could be extended to enable the engine to tackle more complex logic for filling grids such as this.

8.9.3. Java Source and Rules Overview

The Java source code can be found in the /src/main/java/org/drools/examples/sudoku directory,

with the two DRL files defining the rules located in the /src/main/rules/org/drools/examples/sudoku

directory.

The package org.drools.examples.sudoku.swing contains a set of classes which implement

a framework for Sudoku puzzles. Note that this package does not have any dependencies on

the Drools libraries. SudokuGridModel defines an interface which can be implemented to store a

Sudoku puzzle as a 9x9 grid of Integer values, some of which may be null, indicating that the

value for the cell has not yet been resolved. SudokuGridView is a Swing component which can

visualize any implementation of SudokuGridModel. SudokuGridEvent and SudokuGridListener

are used to communicate state changes between the model and the view: events are fired when

a cell's value is resolved or changed. If you are familiar with the model-view-controller patterns in

Chapter 8. Examples

288

other Swing components such as JTable then this pattern should be familiar. SudokuGridSamples

provides a number of partially filled Sudoku puzzles for demonstration purposes.

Package org.drools.examples.sudoku.rules contains an implementation of

SudokuGridModel which is based on Drools. Two Java objects are used, both of which extend

AbstractCellValue and represent a value for a specific cell in the grid, including the row and

column location of the cell, an index of the 3x3 zone the cell is contained in, and the value of

the cell. PossibleCellValue indicates that we do not currently know for sure what the value

in a cell is. There can be from 2 to 9 possible cell values for a given cell. ResolvedCellValue

indicates that we have determined what the value for a cell must be. There can only be one

resolved cell value for a given cell. DroolsSudokuGridModel implements SudokuGridModel and

is responsible for converting an initial two dimensional array of partially specified cells into a set of

CellValue Java object, creating a Working Memory based on solverSudoku.drl and inserting

the CellValue objects into the Working Memory. When the solve() method is called it calls in turn

fireAllRules() on this Working Memory to try to solve the puzzle. DroolsSudokuGridModel

attaches a WorkingMemoryListener to the Working Memory, which allows it to be called back

on insert and retract events as the puzzle is solved. When a new ResolvedCellValue is inserted

into the Working Memory, this callback allows the implementation to fire a SudokuGridEvent to

its SudokuGridListener clientele, which can then update themselves in realtime. Once all the

rules fired by the solver Working Memory have executed, DroolsSudokuGridModel runs a second

set of rules, based on validatorSudoku.drl which works with the same set of Java objects to

determine whether the resulting grid is a valid and a full solution.

The class org.drools.examples.sudoku.Main implements a Java application combining the

components desribed.

The packae org.drools.examples.sudoku contains two DRL files. solverSudoku.drl defines

the rules which attempt to solve a Sudoku puzzle, and validator.drl defines the rules which

determin whether the current state of the Working Memory represents a valid solution. Both use

PossibleCellValue and ResolvedCellValue objects as their facts and both output information

to the Console window as their rules fire. In a real-world situation we would insert logging

information and use the WorkingMemoryListener to display this information to a user, rather than

use the console in this fashion.

8.9.4. Sudoku Validator Rules (validatorSudoku.drl)

We start with the validator rules as this rule set is shorter and simpler than the solver rule set.

The first rule simply checks that no PossibleCellValue objects remain in the Working Memory.

Once the puzzle is solved, only ResolvedCellValue objects should be present, one for each cell.

The other three rules each match all of the ResolvedCellValue objects and bind them to the

variable $resolved1. They then look for ResolvedCellValues that contain the same value

and are located, respectively, in the same row, column, or 3x3 zone. If these rules are fired

they add a message to a global list of strings describing the reason the solution is invalid.

DroolsSudokoGridModel injects this list before it runs the rule set and checks whether it is empty

Sudoku Solving Rules (solverSudoku.drl)

289

or not after having called fireAllRules(). If it is not empty then it prints all the strings in the list

and sets a flag to indicate that the grid is not solved.

8.9.5. Sudoku Solving Rules (solverSudoku.drl)

Now let us look at the more complex rule set used to solve Sudoku puzzles.

Rule #1 is basically a book-keeping rule. Several of the other rules insert ResolvedCellValues

into the working memory at specific rows and columns after they have determined that a given

cell must have a certain value. At this point, it is important to clear the Working Memory of

any inserted PossibleCellValues at the same row and column with invalid values. This rule is

therefore given a higher salience than the remaining rules to ensure that as soon as the LHS is

true, activations for the rule move to the top of the Agenda and are fired. In turn, this prevents

the spurious firing of other rules due to the combination of a ResolvedCellValue and one or

more PossibleCellValues being present in the same cell. This rule also calls update() on the

ResolvedCellValue, even though its value has not in fact been modified to ensure that Drools

fires an event to any WorkingMemoryListeners attached to the Working Memory so that they can

update themselves - in this case so that the GUI can display the new state of the grid.

Rule #2 identifies cells in the grid which have only one possible value. The first line of the when

clause matches all of the PossibleCellValue objects in the Working Memory. The second line

demonstrates a use of the not keyword. This rule will only fire if no other PossibleCellValue

objects exist in the Working Memory at the same row and column but with a different value. When

the rule fires, the single PossibleCellValue at the row and column is retracted from the Working

Memory and is replaced by a new ResolvedCellValue at the same row and column with the

same value.

Rule #3 removes PossibleCellValues with a given value from a row when they have the same

value as a ResolvedCellValue. In other words, when a cell is filled with a resolved value, we

need to remove the possibility of any other cell on the same row having this value. The first

line of the when clause matches all ResolvedCellValue objects in the Working Memory. The

second line matches PossibleCellValues which have both the same row and the same value

as these ResolvedCellValue objects. If any are found, the rule activates and, when fired retracts

the PossibleCellValue which can no longer be a solution for that cell.

Rules #4 and #5 act in the same way as Rule #3 but check for redundant PossibleCellValues

in a given column and a given zone of the grid as a ResolvedCellValue respectively.

Rule #6 checks for the scenario where a possible cell value only appears once in a given row. The

first line of the LHS matches against all PossibleCellValue facts in the Working Memory, storing

the result in a number of local variables. The second line checks that no other PossibleCellValue

objects with the same value exist on this row. The third to fifth lines check that there is not a

ResolvedCellValue with the same value in the same zone, row or column so that this rule does

not fire prematurely. It is interesting to note that we could remove lines 3 to 5 and give rules #3,

#4 and #5 a higher salience to make sure they always fire before rules #6,#7 and #8. When the

rule fires, we know that $possible must represent the value for the cell; so, as in Rule #2, we

retract $possible and replace it with the equivalent, new ResolvedCellValue.

Chapter 8. Examples

290

Rules #7 and #8 act in the same way as Rule #2 but check for single PossibleCellValues in a

given column and a given zone of the grid, respectively.

Rule #9 represents the most complex currently implemented rule. This rule implements the logic

that, if we know that a pair of given values can only occur in two cells on a specific row, (for example

we have determined the values of 4 and 6 can only appear in the first row in cells [0,3] and [0,5])

and this pair of cells can not hold other values, then, although we do not know which of the pair

contains a four and which contains a six, we do know that these two values must be in these two

cells, and hence we can remove the possibility of them occuring anywhere else in the same row.

Rules #10 and #11 act in the same way as rule #9 but check for the existance of only two possible

values in a given column and zone, respectively.

To solve harder grids, the rule set would need to be extended further with more complex rules

that encapsulate more complex reasoning.

8.9.6. Suggestions for Future Developments

There are a number of ways in which this example could be developed. The reader is encouraged

to consider these as excercises.

• Agenda groups are a great declarative tool for phased execution. In this example, it is easy to

see we have two phases: "resolution" and "validation". Right now, they are executed by creating

two separate rule bases, each for one "job". Presumably it would be better to define agenda

groups for all the rules, spliting them in "resolution" rules and "validation" rules, all loaded in a

single rule base. The engine executes resolution and right after that, executes validation.

• Auto-focus is a great way of handling exceptions to the regular rules execution. In our case,

if we detect an inconsistency, either in the input data or in the resolution rules, why should

we spend time continuing the execution if it will be invalid anyway? It is better to simply (and

immediately) report the inconsistency as soon as it is found. To do that, since we now have

a single rulebase with all rules, we simply need to define the auto-focus attribute for all rules

validating puzzle consistency.

• Logical insert: an inconsistency only exists while wrong data is in the working memory. As so, we

could state that the validation rules logically insert inconsistencies and as soon as the offending

data is retracted, the inconsistency no longer exists.

• session.iterateObjects(): although a valid use case having a global list to add

the found problems, I think it would be more interesting to ask the Stateful

Session by the desired list of problems, using session.iterateObjects(new

ClassObjectFilter(Inconsistency.class)). Having the inconsistency class can also

allow us to paint in red the offending cells in the GUI.

• kcontext.getKnowledgeRuntime().halt(): even reporting the error as soon as it is found,

we need a way to tell the engine to stop evaluating rules. We can do that creating a rule that,

in the presence of inconsistencies, calls halt() to stop evaluation.

Number Guess

291

• Queries: looking at the method getPossibleCellValues(int row, int col) in

DroolsSudokuGridModel, we see it iterating over all CellValue objects, looking for the few

it wants. That is a great opportunity to demonstrate Drools queries. We just define a query to

return the objects we want and iterate over it, cleanly and nicely. Other queries may be defined

as needed.

• Globals as services: the main objective of this change is to attend the next proposed change ,

but it is nice by its own. In order to teach the use of globals as services, it would be nice to

set up a callback, so that each rule that finds the ResolvedCellValue for a given cell can call,

to notify and update the corresponding cell in the GUI, providing immediate feedback for the

user. Also, the last found cell could have its number painted in a different color to facilitate the

identification of the rules' conclusions.

• Step by step execution: now that we have immediate user feedback, we can make use of the

restricted run feature in Drools, i.e., we could add a button in the GUI, that, when activated,

causes the execution of a single rule, by calling fireAllRules(1). This way, the user would

see, step by step, what the engine is doing.

8.10. Number Guess

Name: Number Guess

Main class: org.drools.examples.NumberGuessExample

Type: Java application

Rules file: NumberGuess.drl

Objective: Demonstrate use of Rule Flow to organise Rules

The "Number Guess" example shows the use of Rule Flow, a way of controlling the order in which

rules are fired. It uses widely understood workflow diagrams for defining the order in which groups

of rules will be executed.

Example 8.69. Creating the Number Guess RuleBase:

NumberGuessExample.main() - part 1

final KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("NumberGuess.drl",

 ShoppingExample.class),

 ResourceType.DRL);

kbuilder.add(ResourceFactory.newClassPathResource("NumberGuess.rf",

 ShoppingExample.class),

 ResourceType.DRF);

final KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

Chapter 8. Examples

292

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

The creation of the package and the loading of the rules (using the add() method) is the same as

the previous examples. There is an additional line to add the Rule Flow (NumberGuess.rf), which

provides the option of specifying different rule flows for the same Knowledge Base. Otherwise,

the Knowledge Base is created in the same manner as before.

Example 8.70. Starting the RuleFlow: NumberGuessExample.main() - part 2

final StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

KnowledgeRuntimeLogger logger =

 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "log/numberguess");

ksession.insert(new GameRules(100, 5));

ksession.insert(new RandomNumber());

ksession.insert(new Game());

ksession.startProcess("Number Guess");

ksession.fireAllRules();

logger.close();

ksession.dispose();

Once we have a Knowledge Base, we can use it to obtain a Stateful Session. Into our session

we insert our facts, i.e., standard Java objects. (For simplicity, in this sample, these classes are

all contained within our NumberGuessExample.java file. Class GameRules provides the maximum

range and the number of guesses allowed. Class RandomNumber automatically generates a

number between 0 and 100 and makes it available to our rules, by insertion via the getValue()

method. Class Game keeps track of the guesses we have made before, and their number.

Note that before we call the standard fireAllRules() method, we also start the process that

we loaded earlier, via the startProcess() method. We'll learn where to obtain the parameter we

pass ("Number Guess", i.e., the identifier of the rule flow) when we talk about the rule flow file and

the graphical Rule Flow Editor below.

Before we finish the discussion of our Java code, we note that in some real-life application we

would examine the final state of the objects. (Here, we could retrieve the number of guesses, to

add it to a high score table.) For this example we are content to ensure that the Working Memory

session is cleared by calling the dispose() method.

Number Guess

293

Figure 8.18. RuleFlow for the NumberGuess Example

If you open the NumberGuess.rf file in the Drools IDE (provided you have the JBoss Rules

extensions installed correctly in Eclipse) you should see the above diagram, similar to a standard

flowchart. Its icons are similar (but not exactly the same) as in the JBoss jBPM workflow product.

Should you wish to edit the diagram, a menu of available components should be available to the

left of the diagram in the IDE, which is called the palette. This diagram is saved in XML, an (almost)

human readable format, using XStream.

If it is not already open, ensure that the Properties View is visible in the IDE. It can be opened by

clicking "Window", then "Show View" and "Other", where you can select the "Properties" view. If

you do this before you select any item on the rule flow (or click on the blank space in the rule flow)

you should be presented with the following set of properties.

Figure 8.19. Properties for the Number Guess Rule Flow

Keep an eye on the Properties View as we progress through the example's rule flow, as it presents

valuable information. In this case, it provides us with the identification of the Rule Flow Process

that we used in our earlier code snippet, when we called session.startProcess().

In the "Number Guess" Rule Flow we encounter several node types, many of them identified by

an icon.

Chapter 8. Examples

294

• The Start node (white arrow in a green circle) and the End node (red box) mark beginning and

end of the rule flow.

• A Rule Flow Group box (yellow, without an icon) represents a Rule Flow Groups defined in our

rules (DRL) file that we will look at later. For example, when the flow reaches the Rule Flow

Group "Too High", only those rules marked with an attribute of ruleflow-group "Too High"

can potentially fire.

• Action nodes (yellow, cog-shaped icon) perform standard Java method calls. Most action nodes

in this example call System.out.println(), indicating the program's progress to the user.

• Split and Join Nodes (blue ovals, no icon) such as "Guess Correct?" and "More guesses Join"

mark places where the flow of control can split, according to various conditions, and rejoin,

respectively

• Arrows indicate the flow between the various nodes.

The various nodes in combination with the rules make the Number Guess game work. For

example, the "Guess" Rule Flow Group allows only the rule "Get user Guess" to fire, because only

that rule has a matching attribute of ruleflow-group "Guess".

Example 8.71. A Rule firing only at a specific point in the Rule Flow:

NumberGuess.drl

rule "Get user Guess"

 ruleflow-group "Guess"

 no-loop

 when

 $r : RandomNumber()

 rules : GameRules(allowed : allowedGuesses)

 game : Game(guessCount < allowed)

 not (Guess())

 then

 System.out.println("You have " + (rules.allowedGuesses - game.guessCount)

 + " out of " + rules.allowedGuesses

 + " guesses left.\nPlease enter your guess from 0 to "

 + rules.maxRange);

 br = new BufferedReader(new InputStreamReader(System.in));

 i = br.readLine();

 modify (game) { guessCount = game.guessCount + 1 }

 insert(new Guess(i));

end

The rest of this rule is fairly standard. The LHS section (after when) of the rule states that it will

be activated for each RandomNumber object inserted into the Working Memory where guessCount

Number Guess

295

is less than allowedGuesses from the GameRules object and where the user has not guessed

the correct number.

The RHS section (or consequence, after then) prints a message to the user and then awaits

user input from System.in. After obtaining this input (the readLine() method call blocks until

the return key is pressed) it modifies the guess count and inserts the new guess, making both

available to the Working Memory.

The rest of the rules file is fairly standard: the package declares the dialect as MVEL, and various

Java classes are imported. In total, there are five rules in this file:

1. Get User Guess, the Rule we examined above.

2. A Rule to record the highest guess.

3. A Rule to record the lowest guess.

4. A Rule to inspect the guess and retract it from memory if incorrect.

5. A Rule that notifies the user that all guesses have been used up.

One point of integration between the standard Rules and the RuleFlow is via the ruleflow-group

attribute on the rules, as dicussed above. A second point of integration between the rules (.drl) file

and the Rules Flow .rf files is that the Split Nodes (the blue ovals) can use values in the Working

Memory (as updated by the rules) to decide which flow of action to take. To see how this works,

click on the "Guess Correct Node"; then within the Properties View, open the Constraints Editor

by clicking the button at the right that appears once you click on the "Constraints" property line.

You should see something similar to the diagram below.

Figure 8.20. Edit Constraints for the "Guess Correct" Node

Chapter 8. Examples

296

Click on the "Edit" button beside "To node Too High" and you'll see a dialog like the one below.

The values in the "Textual Editor" window follow the standard rule format for the LHS and can

refer to objects in Working Memory. The consequence (RHS) is that the flow of control follows

this node (i.e., "To node Too High") if the LHS expression evaluates to true.

Figure 8.21. Constraint Editor for the "Guess Correct" Node: value too high

Since the file NumberGuess.java contains a main() method, it can be run as a standard Java

application, either from the command line or via the IDE. A typical game might result in the

interaction below. The numbers in bold are typed in by the user.

Number Guess

297

Example 8.72. Example Console output where the Number Guess Example

beat the human!

You have 5 out of 5 guesses left.

Please enter your guess from 0 to 100

50

Your guess was too high

You have 4 out of 5 guesses left.

Please enter your guess from 0 to 100

25

Your guess was too low

You have 3 out of 5 guesses left.

Please enter your guess from 0 to 100

37

Your guess was too low

You have 2 out of 5 guesses left.

Please enter your guess from 0 to 100

44

Your guess was too low

You have 1 out of 5 guesses left.

Please enter your guess from 0 to 100

47

Your guess was too low

You have no more guesses

The correct guess was 48

A summary of what is happening in this sample is:

1. The main() method of NumberGuessExample.java loads a Rule Base, creates a Stateful

Session and inserts Game, GameRules and RandomNumber (containing the target number)

objects into it. The method also sets the process flow we are going to use, and fires all rules.

Control passes to the Rule Flow.

2. File NumberGuess.rf, the Rule Flow, begins at the "Start" node.

3. Control passes (via the "More guesses" join node) to the Guess node.

4. At the Guess node, the appropriate Rule Flow Group ("Get user Guess") is enabled. In this

case the Rule "Guess" (in the NumberGuess.drl file) is triggered. This rule displays a message

to the user, takes the response, and puts it into Working Memory. Flow passes to the next Rule

Flow Node.

5. At the next node, "Guess Correct", constraints inspect the current session and decide which

path to take.

Chapter 8. Examples

298

If the guess in step 4 was too high or too low, flow proceeds along a path which has an action

node with normal Java code printing a suitable message and a Rule Flow Group causing a

highest guess or lowest guess rule to be triggered. Flow passes from these nodes to step 6.

If the guess in step 4 was right, we proceed along the path towards the end of the Rule Flow.

Before we get there, an action node with normal Java code prints a statement "you guessed

correctly". There is a join node here (just before the Rule Flow end) so that our no-more-guesses

path (step 7) can also terminate the Rule Flow.

6. Control passes as per the Rule Flow via a join node, a guess incorrect Rule Flow Group

(triggering a rule to retract a guess from Working Memory) onto the "More guesses" decision

node.

7. The "More guesses" decision node (on the right hand side of the rule flow) uses constraints,

again looking at values that the rules have put into the working memory, to decide if we have

more guesses and if so, goto step 3. If not, we proceed to the end of the rule flow, via a Rule

Flow Group that triggers a rule stating "you have no more guesses".

8. The loop over steps 3 to 7 continues until the number is guessed correctly, or we run out of

guesses.

8.11. Miss Manners and Benchmarking

Name: Miss Manners

Main class: org.drools.benchmark.manners.MannersBenchmark

Type: Java application

Rules file: manners.drl

Objective: Advanced walkthrough on the Manners benchmark, covers Depth conflict resolution

 in depth.

8.11.1. Introduction

Miss Manners is throwing a party and, being a good host, she wants to arrange good seating. Her

initial design arranges everyone in male-female pairs, but then she worries about people have

things to talk about. What is a good host to do? She decides to note the hobby of each guest so

she can then arrange guests not only pairing them according to alternating sex but also ensuring

that a guest has someone with a common hobby, at least on one side.

Introduction

299

Figure 8.22. Miss Manners' Guests

8.11.1.1. BenchMarking

Five benchmarks were established in the 1991 paper "Effects of Database Size on Rule System

Performance: Five Case Studies" by David Brant, Timothy Grose, Bernie Lofaso and Daniel P.

Miranker:

• Manners uses a depth-first search approach to determine the seating arrangements alternating

women and men and ensuring one common hobby for neighbors.

• Waltz establishes a three-dimensional interpretation of a line drawing by line labeling by

constraint propagation.

• WaltzDB is a more general version of Waltz, supporting junctions of more than three lines and

using a database.

• ARP is a route planner for a robotic air vehicle using the A* search algorithm to achieve minimal

cost.

• Weaver VLSI router for channels and boxes using a black-board technique.

Chapter 8. Examples

300

Manners has become the de facto rule engine benchmark. Its behavior, however, is now well

known and many engines optimize for this, thus negating its usefulness as a benchmark which

is why Waltz is becoming more favorable. These five benchmarks are also published at the

University of Texas http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/.

8.11.1.2. Miss Manners Execution Flow

After the first seating arrangement has been assigned, a depth-first recursion occurs which

repeatedly assigns correct seating arrangements until the last seat is assigned. Manners uses a

Context instance to control execution flow. The activity diagram is partitioned to show the relation

of the rule execution to the current Context state.

Figure 8.23. Manners Activity Diagram

8.11.1.3. The Data and Results

Before going deeper into the rules, let's first take a look at the asserted data and the resulting

seating arrangement. The data is a simple set of five guests who should be arranged so that sexes

alternate and neighbors have a common hobby.

http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/

Indepth Discussion

301

The Data

The data is given in OPS5 syntax, with a parenthesized list of name and value pairs for each

attribute. Each person has only one hobby.

(guest (name n1) (sex m) (hobby h1))

(guest (name n2) (sex f) (hobby h1))

(guest (name n2) (sex f) (hobby h3))

(guest (name n3) (sex m) (hobby h3))

(guest (name n4) (sex m) (hobby h1))

(guest (name n4) (sex f) (hobby h2))

(guest (name n4) (sex f) (hobby h3))

(guest (name n5) (sex f) (hobby h2))

(guest (name n5) (sex f) (hobby h1))

(last_seat (seat 5))

The Results

Each line of the results list is printed per execution of the "Assign Seat" rule. They key bit to

notice is that each line has a "pid" value one greater than the last. (The significance of this will be

explained in the discussion of the rule "Assign Seating".) The "ls", "rs", "ln" and "rn" refer to the left

and right seat and neighbor's name, respectively. The actual implementation uses longer attribute

names (e.g., leftGuestName, but here we'll stick to the notation from the original implementation.

[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]

[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]

[Seating id=4, pid=3, done=false, ls=3, rn=n3, rs=4, rn=n2]

[Seating id=5, pid=4, done=false, ls=4, ln=n2, rs=5, rn=n1]

8.11.2. Indepth Discussion

8.11.2.1. Cheating

Manners has been designed to exercise cross product joins and Agenda activities. Many people

not understanding this tweak the example to achieve better performance, making their port of the

Manners benchmark pointless. Known cheats or porting errors for Miss Manners are:

• Using arrays for a guests hobbies, instead of asserting each one as a single fact massively

reduces the cross products.

• Altering the sequence of data can also reduce the amount of matching, increasing execution

speed.

• It's possible to change the not Conditional Element so that the test algorithm only uses the

"first-best-match", which is, basically, transforming the test algorithm to backward chaining. The

results are only comparable to other backward chaining rule engines or ports of Manners.

Chapter 8. Examples

302

• Removing the context so the rule engine matches the guests and seats prematurely. A proper

port will prevent facts from matching using the context start.

• It's possible to prevent the rule engine from performing combinatorial pattern matching.

• If no facts are retracted in the reasoning cycle, as a result of the not CE, the port is incorrect.

8.11.2.2. Conflict Resolution

The Manners benchmark was written for OPS5 which has two conflict resolution strategies, LEX

and MEA. LEX is a chain of several strategies including salience, recency and complexity. The

recency part of the strategy drives the depth first (LIFO) firing order. The CLIPS manual documents

the Recency strategy as follows:

Every fact and instance is marked internally with a "time tag" to indicate its relative

recency with respect to every other fact and instance in the system. The pattern

entities associated with each rule activation are sorted in descending order for

determining placement. An activation with a more recent pattern entity is placed

before activations with less recent pattern entities. To determine the placement

order of two activations, compare the sorted time tags of the two activations one

by one starting with the largest time tags. The comparison should continue until

one activation’s time tag is greater than the other activation’s corresponding time

tag. The activation with the greater time tag is placed before the other activation

on the agenda. If one activation has more pattern entities than the other activation

and the compared time tags are all identical, then the activation with more time

tags is placed before the other activation on the agenda.

—CLIPS Reference Manual

However Jess and CLIPS both use the Depth strategy, which is simpler and lighter, which Drools

also adopted. The CLIPS manual documents the Depth strategy as:

Newly activated rules are placed above all rules of the same salience. For

example, given that fact-a activates rule-1 and rule-2 and fact-b activates rule-3

and rule-4, then if fact-a is asserted before fact-b, rule-3 and rule-4 will be above

rule-1 and rule-2 on the agenda. However, the position of rule-1 relative to rule-2

and rule-3 relative to rule-4 will be arbitrary.

—CLIPS Reference Manual

The initial Drools implementation for the Depth strategy would not work for Manners without the

use of salience on the "make_path" rule. The CLIPS support team had this to say:

The default conflict resolution strategy for CLIPS, Depth, is different than the

default conflict resolution strategy used by OPS5. Therefore if you directly

translate an OPS5 program to CLIPS, but use the default depth conflict resolution

strategy, you're only likely to get the correct behavior by coincidence. The LEX

and MEA conflict resolution strategies are provided in CLIPS to allow you to

quickly convert and correctly run an OPS5 program in CLIPS.

—Clips Support Forum

Indepth Discussion

303

Investigation into the CLIPS code reveals there is undocumented functionality in the Depth

strategy. There is an accumulated time tag used in this strategy; it's not an extensively fact by

fact comparison as in the recency strategy, it simply adds the total of all the time tags for each

activation and compares.

8.11.2.3. Rule "assignFirstSeat"

Once the context is changed to START_UP, activations are created for all asserted guest. Because

all activations are created as the result of a single Working Memory action, they all have the same

Activation time tag. The last asserted Guest object would have a higher fact time tag, and its

Activation would fire because it has the highest accumulated fact time tag. The execution order in

this rule has little importance, but has a big impact in the rule "Assign Seat". The activation fires

and asserts the first Seating arrangement and a Path, and then sets the Context attribute state

to create an activation for rule findSeating.

rule assignFirstSeat

 when

 context : Context(state == Context.START_UP)

 guest : Guest()

 count : Count()

 then

 String guestName = guest.getName();

 Seating seating =

 new Seating(count.getValue(), 1, true, 1, guestName, 1, guestName);

 insert(seating);

 Path path = new Path(count.getValue(), 1, guestName);

 insert(path);

 modify(count) { setValue (count.getValue() + 1) }

 System.out.println("assign first seat : " + seating + " : " + path);

 modify(context) {

 setState(Context.ASSIGN_SEATS)

 }

end

8.11.2.4. Rule "findSeating"

This rule determines each of the Seating arrangements. The rule creates cross product solutions

for all asserted Seating arrangements against all the asserted guests except against itself or any

already assigned chosen solutions.

Chapter 8. Examples

304

rule findSeating

 when

 context : Context(state == Context.ASSIGN_SEATS)

 $s : Seating(pathDone == true)

 $g1 : Guest(name == $s.rightGuestName)

 $g2 : Guest(sex != $g1.sex, hobby == $g1.hobby)

 count : Count()

 not (Path(id == $s.id, guestName == $g2.name))

 not (Chosen(id == $s.id, guestName == $g2.name, hobby == $g1.hobby))

 then

 int rightSeat = $s.getRightSeat();

 int seatId = $s.getId();

 int countValue = count.getValue();

 Seating seating =

 new Seating(countValue, seatId, false, rightSeat,

 $s.getRightGuestName(), rightSeat + 1, $g2.getName());

 insert(seating);

 Path path = new Path(countValue, rightSeat + 1, $g2.getName());

 insert(path);

 Chosen chosen = new Chosen(seatId, $g2.getName(), $g1.getHobby());

 insert(chosen);

 System.err.println("find seating : " + seating + " : " + path +

 " : " + chosen);

 modify(count) {setValue(countValue + 1)}

 modify(context) {setState(Context.MAKE_PATH)}

end

However, as can be seen from the printed results shown earlier, it is essential that only the Seating

with the highest pid cross product be chosen. How can this be possible if we have activations, of

the same time tag, for nearly all existing Seating and Guest objects? For example, on the third

iteration of findDeating the produced activations will be as shown below. Remember, this is from

a very small data set, and with larger data sets there would be many more possible activated

Seating solutions, with multiple solutions per pid:

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, ls=2, ln=n4, rs=3, rn=n3]

Indepth Discussion

305

[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3]

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

The creation of all these redundant activations might seem pointless, but it must be remembered

that Manners is not about good rule design; it's purposefully designed as a bad ruleset to fully

stress-test the cross product matching process and the Agenda, which this clearly does. Notice

that each activation has the same time tag of 35, as they were all activated by the change in the

Context object to ASSIGN_SEATS. With OPS5 and LEX it would correctly fire the activation with

the Seating asserted last. With Depth, the accumulated fact time tag ensures that the activation

with the last asserted Seating fires.

8.11.2.5. Rules "makePath" and "pathDone"

Rule makePath must always fire before pathDone. A Path object is asserted for each Seating

arrangement, up to the last asserted Seating. Notice that the conditions in pathDone are a subset

of those in makePath - so how do we ensure that makePath fires first?

rule makePath

 when

 Context(state == Context.MAKE_PATH)

 Seating(seatingId:id, seatingPid:pid, pathDone == false)

 Path(id == seatingPid, pathGuestName:guestName, pathSeat:seat)

 not Path(id == seatingId, guestName == pathGuestName)

 then

 insert(new Path(seatingId, pathSeat, pathGuestName));

end

rule pathDone

 when

 context : Context(state == Context.MAKE_PATH)

 seating : Seating(pathDone == false)

 then

 modify(seating) {setPathDone(true)}

Chapter 8. Examples

306

 modify(context) {setState(Context.CHECK_DONE)}

end

Indepth Discussion

307

Figure 8.24. Rete Diagram

Chapter 8. Examples

308

Both rules end up on the Agenda in conflict and with identical activation time tags. However, the

accumulate fact time tag is greater for "Make Path" so it gets priority.

8.11.2.6. Rules "continue" and "areWeDone"

Rule areWeDone only activates when the last seat is assigned, at which point both rules will be

activated. For the same reason that makePath always wins over path Done, areWeDone will take

priority over rule continue.

rule areWeDone

 when

 context : Context(state == Context.CHECK_DONE)

 LastSeat(lastSeat: seat)

 Seating(rightSeat == lastSeat)

 then

 modify(context) {setState(Context.PRINT_RESULTS)}

end

rule continue

 when

 context : Context(state == Context.CHECK_DONE)

 then

 modify(context) {setState(Context.ASSIGN_SEATS)}

end

8.11.3. Output Summary

Assign First seat

=>[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

=>[fid:14:14]:[Path id=1, seat=1, guest=n5]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1 , pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]*

Assign Seating

Output Summary

309

=>[fid:15:17] :[Seating id=2 , pid=1 , done=false, ls=1, lg=n5, rs=2, rn=n4]

=>[fid:16:18]:[Path id=2, seat=2, guest=n4]

=>[fid:17:19]:[Chosen id=1, name=n4, hobbies=h1]

=>[ActivationCreated(21): rule=makePath

[fid:15:17] : [Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]

[fid:14:14] : [Path id=1, seat=1, guest=n5]*

==>[ActivationCreated(21): rule=pathDone

[Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]*

Make Path

=>[fid:18:22:[Path id=2, seat=1, guest=n5]]

Path Done

Continue Process

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:7:7]:[Guest name=n4, sex=f, hobbies=h3]

[fid:4:4] : [Guest name=n3, sex=m, hobbies=h3]*

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1], [fid:12:20] : [Count value=3]

=>[ActivationCreated(25): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, lnn4, rs=3, rn=n3]]

=>[fid:20:27]:[Path id=3, seat=3, guest=n3]]

=>[fid:21:28]:[Chosen id=2, name=n3, hobbies=h3}]

=>[ActivationCreated(30): rule=makePath

[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]

[fid:18:22]:[Path id=2, seat=1, guest=n5]*

=>[ActivationCreated(30): rule=makePath

[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]

[fid:16:18]:[Path id=2, seat=2, guest=n4]*

Chapter 8. Examples

310

=>[ActivationCreated(30): rule=done

[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]*

Make Path

=>[fid:22:31]:[Path id=3, seat=1, guest=n5]

Make Path

=>[fid:23:32] [Path id=3, seat=2, guest=n4]

Path Done

Continue Processing

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, ls=2, ln=n4, rs=3, rn=n3]

[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3], [fid:12:29]*

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1], [fid:1:1] : [Guest name=n1, sex=m,

 hobbies=h1]

Assign Seating

=>[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]]

=>[fid:25:37]:[Path id=4, seat=4, guest=n2]]

=>[fid:26:38]:[Chosen id=3, name=n2, hobbies=h3]

==>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]

[fid:23:32]:[Path id=3, seat=2, guest=n4]*

==>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]

[fid:20:27]:[Path id=3, seat=3, guest=n3]*

=>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]

[fid:22:31]:[Path id=3, seat=1, guest=n5]*

Conway's Game Of Life

311

=>[ActivationCreated(40): rule=done

[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]*

Make Path

=>fid:27:41:[Path id=4, seat=2, guest=n4]

Make Path

=>fid:28:42]:[Path id=4, seat=1, guest=n5]]

Make Path

=>fid:29:43]:[Path id=4, seat=3, guest=n3]]

Path Done

Continue Processing

=>[ActivationCreated(46): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1], [fid:2:2]

[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(46): rule=findSeating

[fid:24:44]:[Seating id=4, pid=3, done=true, ls=3, ln=n3, rs=4, rn=n2]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]*

=>[ActivationCreated(46): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:30:47]:[Seating id=5, pid=4, done=false, ls=4, ln=n2, rs=5, rn=n1]

=>[fid:31:48]:[Path id=5, seat=5, guest=n1]

=>[fid:32:49]:[Chosen id=4, name=n1, hobbies=h1]

8.12. Conway's Game Of Life

Name: Conway's Game Of Life

Main class: org.drools.examples.conway.ConwayAgendaGroupRun

 org.drools.examples.conway.ConwayRuleFlowGroupRun

Type: Java application

Rules file: conway-ruleflow.drl conway-agendagroup.drl

Chapter 8. Examples

312

Objective: Demonstrates 'accumulate', 'collect' and 'from'

Conway's Game Of Life, described in http://en.wikipedia.org/wiki/Conway's_Game_of_Life and in

http://www.math.com/students/wonders/life/life.html, is a famous cellular automaton conceived in

the early 1970's by the mathematician John Conway. While the system is well known as "Conway's

Game Of Life", it really isn't a game at all. Conway's system is more like a simulation of a form of

life. Don't be intimidated. The system is terribly simple and terribly interesting. Math and Computer

Science students alike have marvelled over Conway's system for more than 30 years now. The

application presented here is a Swing-based implementation of Conway's Game of Life. The

rules that govern the system are implemented as business rules using Drools. This document will

explain the rules that drive the simulation and discuss the Drools parts of the implementation.

We'll first introduce the grid view, shown below, designed for the visualisation of the game, showing

the "arena" where the life simuation takes place. Initially the grid is empty, meaning that there are

no live cells in the system. Each cell is either alive or dead, with live cells showing a green ball.

Preselected patterns of live cells can be chosen from the "Pattern" drop-down list. Alternatively,

individual cells can be doubled-clicked to toggle them between live and dead. It's important to

understand that each cell is related to its neighboring cells, which is fundamental for the game's

rules. Neighbors include not only cells to the left, right, top and bottom but also cells that are

connected diagonally, so that each cell has a total of 8 neighbors. Exceptions are the four corner

cells which have only three neighbors, and the cells along the four border, with five neighbors each.

Figure 8.25. Conway's Game of Life: Starting a new game

So what are the basic rules that govern this game? Its goal is to show the development of a

population, generation by generation. Each generation results from the preceding one, based on

the simultaneous evaluation of all cells. This is the simple set of rules that govern what the next

generation will look like:

http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://www.math.com/students/wonders/life/life.html

Conway's Game Of Life

313

• If a live cell has fewer than 2 live neighbors, it dies of loneliness.

• If a live cell has more than 3 live neighbors, it dies from overcrowding.

• If a dead cell has exactly 3 live neighbors, it comes to life.

That is all there is to it. Any cell that doesn't meet any of those criteria is left as is for the next

generation. With those simple rules in mind, go back and play with the system a little bit more and

step through some generations, one at a time, and notice these rules taking their effect.

The screenshot below shows an example generation, with a number of live cells. Don't worry about

matching the exact patterns represented in the screen shot. Just get some groups of cells added

to the grid. Once you have groups of live cells in the grid, or select a pre-designed pattern, click

the "Next Generation" button and notice what happens. Some of the live cells are killed (the green

ball disappears) and some dead cells come to life (a green ball appears). Step through several

generations and see if you notice any patterns. If you click on the "Start" button, the system will

evolve itself so you don't need to click the "Next Generation" button over and over. Play with the

system a little and then come back here for more details of how the application works.

Figure 8.26. Conway's Game of Life: A running game

Now lets delve into the code. As this is an advanced example we'll assume that by now you

know your way around the Drools framework and are able to connect the presented highlight,

so that we'll just focus at a high level overview. The example has two ways to execute, one way

uses Agenda Groups to manage execution flow, and the other one uses Rule Flow Groups to

manage execution flow. These two versions are implemented in ConwayAgendaGroupRun and

ConwayRuleFlowGroupRun, respectively. Here, we'll discuss the Rule Flow version, as it's what

most people will use.

All the Cell objects are inserted into the Session and the rules in the ruleflow-group "register

neighbor" are allowed to execute by the Rule Flow process. This group of four rules creates

Chapter 8. Examples

314

Neighbor relations between some cell and its northeastern, northern, northwestern and western

neighbors. This relation is bidirectional, which takes care of the other four directions. Border cells

don't need any special treatment - they simply won't be paired with neighboring cells where there

isn't any. By the time all activations have fired for these rules, all cells are related to all their

neighboring cells.

Example 8.73. Conway's Game of Life: Register Cell Neighbour relations

rule "register north east"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $northEast : Cell(row == ($row - 1), col == ($col + 1))

then

 insert(new Neighbor($cell, $northEast));

 insert(new Neighbor($northEast, $cell));

end

rule "register north"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $north : Cell(row == ($row - 1), col == $col)

then

 insert(new Neighbor($cell, $north));

 insert(new Neighbor($north, $cell));

end

rule "register north west"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $northWest : Cell(row == ($row - 1), col == ($col - 1))

then

 insert(new Neighbor($cell, $northWest));

 insert(new Neighbor($northWest, $cell));

end

rule "register west"

 ruleflow-group "register neighbor"

when

 $cell: Cell($row : row, $col : col)

 $west : Cell(row == $row, col == ($col - 1))

then

Conway's Game Of Life

315

 insert(new Neighbor($cell, $west));

 insert(new Neighbor($west, $cell));

end

Once all the cells are inserted, some Java code applies the pattern to the grid, setting certain

cells to Live. Then, when the user clicks "Start" or "Next Generation", it executes the "Generation"

ruleflow. This ruleflow is responsible for the management of all changes of cells in each generation

cycle.

Chapter 8. Examples

316

Figure 8.27. Conway's Game of Life: rule flow "Generation"

Conway's Game Of Life

317

The rule flow process first enters the "evaluate" group, which means that any active rule in the

group can fire. The rules in this group apply the Game-of-Life rules discussed in the beginning of

the example, determining the cells to be killed and the ones to be given life. We use the "phase"

attribute to drive the reasoning of the Cell by specific groups of rules; typically the phase is tied

to a Rule Flow Group in the Rule Flow process definition. Notice that it doesn't actually change

the state of any Cell objectss at this point; this is because it's evaluating the grid in turn and it

must complete the full evaluation until those changes can be applied. To achieve this, it sets the

cell to a "phase" which is either Phase.KILL or Phase.BIRTH, used later to control actions applied

to the Cell object.

Example 8.74. Conway's Game of Life: Evaluate Cells with state changes

rule "Kill The Lonely"

 ruleflow-group "evaluate"

 no-loop

when

A live cell has fewer than 2 live neighbors

 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,

 phase == Phase.EVALUATE)

then

 modify(theCell){

 setPhase(Phase.KILL);

 }

end

rule "Kill The Overcrowded"

 ruleflow-group "evaluate"

 no-loop

when

A live cell has more than 3 live neighbors

 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,

 phase == Phase.EVALUATE)

then

 modify(theCell){

 setPhase(Phase.KILL);

 }

end

rule "Give Birth"

 ruleflow-group "evaluate"

 no-loop

when

A dead cell has 3 live neighbors

 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,

Chapter 8. Examples

318

 phase == Phase.EVALUATE)

then

 modify(theCell){

 theCell.setPhase(Phase.BIRTH);

 }

end

Once all Cell objects in the grid have been evaluated, we first clear any calculation activations that

occured from any previous data changes. This is done via the "reset calculate" rule, which clears

any activations in the "calculate" group. We then enter a split in the rule flow which allows any

activations in both the "kill" and the "birth" group to fire. These rules are responsible for applying

the state change.

Example 8.75. Conway's Game of Life: Apply the state changes

rule "reset calculate"

 ruleflow-group "reset calculate"

when

then

 WorkingMemory wm = drools.getWorkingMemory();

 wm.clearRuleFlowGroup("calculate");

end

rule "kill"

 ruleflow-group "kill"

 no-loop

when

 theCell: Cell(phase == Phase.KILL)

then

 modify(theCell){

 setCellState(CellState.DEAD),

 setPhase(Phase.DONE);

 }

end

rule "birth"

 ruleflow-group "birth"

 no-loop

when

 theCell: Cell(phase == Phase.BIRTH)

then

 modify(theCell){

 setCellState(CellState.LIVE),

Conway's Game Of Life

319

 setPhase(Phase.DONE);

 }

end

At this stage, a number of Cell objects have been modified with the state changed to either LIVE

or DEAD. Now we get to see the power of the Neighbor facts defining the cell relations. When

a cell becomes live or dead, we use the Neighbor relation to iterate over all surrounding cells,

increasing or decreasing the liveNeighbor count. Any cell that has its count changed is also

set to to the EVALUATE phase, to make sure it is included in the reasoning during the evaluation

stage of the Rule Flow Process. Notice that we don't have to do any iteration ourselves; simply

by applying the relations in the rules we make the rule engine do all the hard work for us, with a

minimal amount of code. Once the live count has been determined and set for all cells, the Rule

Flow Process comes to and end. If the user has initially clicked the "Start" button, the engine will

restart the rule flow; otherwise the user may request another generation.

Example 8.76. Conway's Game of Life: Evaluate cells with state changes

rule "Calculate Live"

 ruleflow-group "calculate"

 lock-on-active

when

 theCell: Cell(cellState == CellState.LIVE)

 Neighbor(cell == theCell, $neighbor : neighbor)

then

 modify($neighbor){

 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),

 setPhase(Phase.EVALUATE);

 }

end

rule "Calculate Dead"

 ruleflow-group "calculate"

 lock-on-active

when

 theCell: Cell(cellState == CellState.DEAD)

 Neighbor(cell == theCell, $neighbor : neighbor)

then

 modify($neighbor){

 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),

 setPhase(Phase.EVALUATE);

 }

end

320

321

Index
B
BeanShell, 6

C
Collection, 124, 124

D
declaration, 127

Domain Specific Languages, 153

DSL, 154

I
Inference Engine, 2

L
Leaps, 2

P
Pattern Matching, 2

Predicate, 129

Production Memory, 2

R
regular expression, 124

Rete, 2, 2

Return Value, 128

W
WorkingMemory, 2

X
XML, 161

XML Rule, 161

322

	Drools Expert User Guide
	Table of Contents
	
	Chapter 1. The Rule Engine
	1.1. What is a Rule Engine?
	1.1.1. Introduction and Background

	1.2. Why use a Rule Engine?
	1.2.1. Advantages of a Rule Engine
	1.2.2. When should you use a Rule Engine?
	1.2.3. When not to use a Rule Engine
	1.2.4. Scripting or Process Engines
	1.2.5. Strong and Loose Coupling

	Chapter 2. Quick Start
	2.1. The Basics
	2.1.1. Stateless Knowledge Session
	2.1.2. Stateful Knowledge Session

	2.2. A Little Theory
	2.2.1. Methods versus Rules
	2.2.2. Cross Products
	2.2.3. Activations, Agenda and Conflict Sets.
	2.2.4. Inference
	2.2.5. Inference and TruthMaintenance

	2.3. More on building and deploying
	2.3.1. Knowledge Base by Configuration Using Changesets
	2.3.2. Knowledge Agent
	2.3.2.1. Knowledge Agent and Custom ClassLoaders
	2.3.2.1.1. Custom ClassLoaders for KnowledgeBuilder
	2.3.2.1.2. Reuse KnowledgeBase ClassLoader

	2.3.2.2. Incremental Change Set Processing
	2.3.2.3. Remote HTTP resource caching

	Chapter 3. User Guide
	3.1. Building
	3.1.1. Building using Code
	3.1.2. Building using Configuration and the ChangeSet XML

	3.2. Deploying
	3.2.1. KnowledgePackage and Knowledge Definitions
	3.2.2. KnowledgeBase
	3.2.3. In-Process Building and Deployment
	3.2.4. Building and Deployment in Separate Processes
	3.2.5. StatefulknowledgeSessions and KnowledgeBase Modifications
	3.2.6. KnowledgeAgent

	3.3. Running
	3.3.1. KnowledgeBase
	3.3.2. StatefulKnowledgeSession
	3.3.3. KnowledgeRuntime
	3.3.3.1. WorkingMemoryEntryPoint
	3.3.3.1.1. Insertion
	3.3.3.1.2. Retraction
	3.3.3.1.3. Update

	3.3.3.2. WorkingMemory
	3.3.3.2.1. Query
	3.3.3.2.2. Live Querries

	3.3.3.3. KnowledgeRuntime
	3.3.3.3.1. Globals

	3.3.3.4. StatefulRuleSession
	3.3.3.4.1. Agenda Filters

	3.3.4. Agenda
	3.3.4.1. Conflict Resolution
	3.3.4.2. AgendaGroup
	3.3.4.3. ActivationGroup
	3.3.4.4. RuleFlowGroup

	3.3.5. Event Model
	3.3.6. KnowledgeRuntimeLogger
	3.3.7. StatelessKnowledgeSession
	3.3.7.1. Sequential Mode

	3.3.8. Commands and the CommandExecutor
	3.3.9. Marshalling
	3.3.10. Persistence and Transactions
	3.3.11. Drools Clips

	Chapter 4. The Rule Language
	4.1. Overview
	4.1.1. A rule file
	4.1.2. What makes a rule

	4.2. Keywords
	4.3. Comments
	4.3.1. Single line comment
	4.3.2. Multi-line comment

	4.4. Error Messages
	4.4.1. Message format
	4.4.2. Error Messages Description
	4.4.2.1. 101: No viable alternative
	4.4.2.2. 102: Mismatched input
	4.4.2.3. 103: Failed predicate
	4.4.2.4. 104: Trailing semi-colon not allowed
	4.4.2.5. 105: Early Exit

	4.4.3. Other Messages

	4.5. Package
	4.5.1. import
	4.5.2. global

	4.6. Function
	4.7. Type Declaration
	4.7.1. Declaring New Types
	4.7.2. Declaring Metadata
	4.7.3. Declaring Metadata for Existing Types
	4.7.4. Accessing Declared Types from the Application Code

	4.8. Rule
	4.8.1. Rule Attributes
	4.8.2. Timers and Calendars
	4.8.3. Left Hand Side (when) Conditional Elements
	4.8.3.1. Pattern
	4.8.3.1.1. Field Constraints
	4.8.3.1.1.1. JavaBeans as facts
	4.8.3.1.1.2. Values
	4.8.3.1.1.3. Single Value Restriction
	4.8.3.1.1.3.1. Operators
	4.8.3.1.1.3.2. Literal Restrictions
	4.8.3.1.1.3.3. Bound Variable Restriction
	4.8.3.1.1.3.4. Return Value Restriction

	4.8.3.1.1.4. Compound Value Restriction
	4.8.3.1.1.5. Multi Restriction

	4.8.3.1.2. Inline Eval Constraints
	4.8.3.1.3. Nested Accessors

	4.8.3.2. Conditional Element and
	4.8.3.3. Conditional Element or
	4.8.3.4. Conditional Element eval
	4.8.3.5. Conditional Element not
	4.8.3.6. Conditional Element exists
	4.8.3.7. Conditional Element forall
	4.8.3.8. Conditional Element from
	4.8.3.9. Conditional Element collect
	4.8.3.10. Conditional Element accumulate
	4.8.3.10.1. Accumulate Functions

	4.8.4. The Right Hand Side (then)
	4.8.4.1. Usage
	4.8.4.2. The modify Statement

	4.8.5. A Note on Auto-boxing and Primitive Types

	4.9. Query
	4.10. Domain Specific Languages
	4.10.1. When to use a DSL
	4.10.2. Editing and managing a DSL
	4.10.3. Using a DSL in your rules
	4.10.4. Adding constraints to facts
	4.10.5. How it works
	4.10.6. Creating a DSL from scratch
	4.10.7. Scope and keywords
	4.10.8. DSLs in the BRMS and IDE

	4.11. XML Rule Language
	4.11.1. When to use XML
	4.11.2. The XML format
	4.11.3. Legacy Drools 2.x XML rule format
	4.11.4. Automatic transforming between formats (XML and DRL)

	Chapter 5. Authoring
	5.1. Decision Tables in Spreadsheets
	5.1.1. When to use Decision tables
	5.1.2. Overview
	5.1.3. How decision tables work
	5.1.4. Keywords and Syntax
	5.1.4.1. Syntax of templates
	5.1.4.2. Keywords

	5.1.5. Creating and integrating Spreadsheet based Decision Tables
	5.1.6. Managing business rules in decision tables
	5.1.6.1. Workflow and collaboration
	5.1.6.2. Using spreadsheet features

	5.1.7. Rule Templates
	5.1.7.1. A decision table-like example

	5.2. Templates
	5.2.1. The Rule Template File
	5.2.2. Expanding a Template
	5.2.2.1. Instantiation from Java Objects
	5.2.2.2. Instantiation from Maps

	5.2.3. Example

	Chapter 6. The Java Rule Engine API
	6.1. Introduction
	6.2. How To Use
	6.2.1. Building and Registering RuleExecutionSets
	6.2.2. Using Stateful and Stateless RuleSessions
	6.2.2.1. Globals

	6.3. References

	Chapter 7. The Rule IDE (Eclipse)
	7.1. Features Outline
	7.2. Creating a Rule Project
	7.3. Creating a New Rule and Wizards
	7.4. Textual Rule Editor
	7.5. The Guided Editor (Rule GUI)
	7.6. Drools Views
	7.6.1. The Working Memory View
	7.6.2. The Agenda View
	7.6.3. The Global Data View
	7.6.4. The Audit View

	7.7. Domain Specific Languages
	7.7.1. Editing languages

	7.8. The Rete View
	7.9. Large DRL Files
	7.10. Debugging Rules
	7.10.1. Creating Breakpoints
	7.10.2. Debugging Rules

	Chapter 8. Examples
	8.1. Getting the Examples
	8.2. Hello World
	8.3. State Example
	8.3.1. Understanding the State Example

	8.4. Fibonacci Example
	8.5. Banking Tutorial
	8.6. Pricing Rule Decision Table Example
	8.6.1. Executing the example
	8.6.2. The decision table

	8.7. Pet Store Example
	8.8. Honest Politician Example
	8.9. Sudoku Example
	8.9.1. Sudoku Overview
	8.9.2. Running the Example
	8.9.3. Java Source and Rules Overview
	8.9.4. Sudoku Validator Rules (validatorSudoku.drl)
	8.9.5. Sudoku Solving Rules (solverSudoku.drl)
	8.9.6. Suggestions for Future Developments

	8.10. Number Guess
	8.11. Miss Manners and Benchmarking
	8.11.1. Introduction
	8.11.1.1. BenchMarking
	8.11.1.2. Miss Manners Execution Flow
	8.11.1.3. The Data and Results

	8.11.2. Indepth Discussion
	8.11.2.1. Cheating
	8.11.2.2. Conflict Resolution
	8.11.2.3. Rule "assignFirstSeat"
	8.11.2.4. Rule "findSeating"
	8.11.2.5. Rules "makePath" and "pathDone"
	8.11.2.6. Rules "continue" and "areWeDone"

	8.11.3. Output Summary

	8.12. Conway's Game Of Life

	Index

