Reference Guide

Erral Framework 1.3

by ToDo Dude ToDo Somewhere ToDo McPants

g (=] = o1 <Y Vii

1. DOCUMENE CONVENTIONS ...iiiiiiiiiiiieeeee ettt ettt e e et e e b e e e e e e e eenb e e e vii

A =T | o= Uod Vi

O L (oY IF T o o R PP UUUPPPPTTTTRI 1
R VY g T S| U 1

1.2, INSEAIIALION ..o e 1
1.2.1. Required SOFIWEAIEcooiiiieiiiii e e 1

bV =TT Vo 1 o P 3
2.1. MESSAQING OVEIVIEW ...eeuiiiiiiiiie ettt ettt e e e e et e e e e e eaa e 3

2.2. MeSSAQEBUIIAET AP ... 3

2.3. Single-Response Conversations & Psuedo-Synchronous Messaging 7

2.4, Sender Inferred SUDJECLSuiiiiiiiii e 7

2.5, BroadCastiNgcceuuu ittt 8

2.6. Client-to-Client COMMUNICALIONiiiieiiiiiiiii e e e e eeneeenns 8

2.7. Message Routing INfOrmation ..o 9

T o T a Lo | 1T g T = o T = 11
4. ASyNchronouS MeSSAQE TASKS ...uiiiiiiiiiiiiiii et e e 13
B, REPEALING TaASKS .iiiiiiiiiiiii e e 15
6. Remote Procedure Calls (RPC) ..o.uuiiiiiiiiii et 17
7. QUEBUE SESSIONS .iiuiiiiiiiiiii et et et e e e e e e e e e et e et e e et e e et e e et e e at e e et e e et e eeta e eanneeanns 19
7L, SCOPES ittt ettt ettt e e e 19
00 T I T 1o o o1 19

7.1.2. SESSION SCOPES ..eeeiiiietiii ettt ettt ettt e e et e e e e 19

2 | = To3 o] [20

8. SEIAIIZALION oeuiiiii e 21
8.1. Serialization of external tyPeScouuiiiiiiiiiii i 21

9. Wiring server Side COMPONENTS ...oouuuiiiiiii et e et e e e eab e eneans 23
10. BUS CONFIQUIALION L..iiiiiii e e e e e e e e e e e et e e et e e e et e e eaneeeenees 25
10.1. web.xml and appserver configurationcc.oiviiiiiiiniieii e 25
10.2. ErraiServiCe.PrOPEITIEScuuiiieieiii et et e e e e e e e e e e e e et e e et e e e eaaneees 26
10.2.1. errai.dispatcher.implementationccoiiiiiiiiinncieii e 27

10.2.2. errai.async_thread _pool_SiZ€ccooviiiiiiiiiiiii i 27

10.2.3. errai.async.Worker_timMEOULviiiiiiieiiiii e 27

10.2.4. errai.authentication_adapterccooevuiiiiiiiiiiiie e 27

10.2.5. errai.require_authentication_for_allccccooooiiiiiii 27

10.2.6. errai.auto_diSCOVEI _SEIVICESiiiviuieiieeiiiieiiieeeieeeatieeeae e st e e e eaneens 27

10.2.7. errai.auto_load_eXtENSIONScccouuiiiiiiiiiieiiiii e 27

O T = g = T7AN o] o o] o] 0 1= 4 1 =T ST 27

O B] oFo1 o =] USSP PP PP UUPPTNN 29
11.1. SIMPIEDISPAICNET ...t 29
11.2. ASYNCDISPAICNETuuiiiiiii et 29

12. Serviet IMPIEMENTALIONS ..o e e e e e e e e e e eaaes 31
12.1. DefaultBIOCKINGSEIVIETuiiiiiii e 31
12.2. TOMCALCOMELSEIVIELoeiiiiii i 31

Reference Guide

13.
14.
15.
16.
17.

18.
19.
20.
21.

12.3. JettyContiNUAtIONSSEIVIETiiiiiii e 31
12.4. JBOSSCOMELSEIVIEL ..uuiiiiiii ettt e e et e e s 31
12.5. GrizzlyCOomMELSEIVIETcoouiiiiiii e e 31
12.6. WEDIOGICASYNCSEIVIEL ...uiiiiiieii e e 31
Debugging Errai APPliCAtiONScooiiiiiiii e 33
[0 1717 0] Lo = o L= P 35
ST LU o] = PP 37
License and EULA ... et 39
a1 e Yo 18 Yo {0 o PP 41
0 T o - T | P 41
2 [1S3 = 11 = U1 T o P 41
17.2.1. Required SOftWAIEccccuiiiiii e e 41
LicenSE @nd BEULA ..o e e e 43
[0 1717 0] Lo = o L= P 45
ST LU o] = PP 47
= T = T PR 49
210, MESSAGING - eeeetneettit ettt ettt ettt ettt e s 49
21.1.1. MeSSAQING OVEIVIEWciiiiiiiiieiiiie e et e e e et e e e e e e e e et e e e eeanes 49
21.1.2. MeSSageBUIlder APL i 49
21.1.3. Single-Response Conversations & Psuedo-Synchronous Messaging 53
21.1.4. Sender Inferred SUDJECEScooouuiiiiiiii e 53
240 0 ST = o = o (o= 1) 11 Vo R 54
21.1.6. Client-to-Client COMMUNICALIONoiieiieiiiie e 54
21.1.7. Message Routing INformationcccceuiiiiiiiiiiiieii e 55

21.2. HANAIING EITOIS ..ottt et et e e 56
21.3. ASynchronous MESSAJE TaASKScciuuiiiiiiiiiiieeiii e e e e et e e e e e et e e e e e aanaees 57
21.4. REPEALING TASKS ...uuiiiiitii ittt ettt et ettt et e e et e e e b e e eaans 58
21.5. Remote Procedure Calls (RPC)uiiiiiiiiiiieiii e e 59
21.6. QUEUE SESSIONS ..evuiitneiiteeiietei e et e e et et et e e et e e et ee it e ean e eateeeaaeetnaeeanaeeeneeeen 60
2060, SCOPES ituitiitiiiitt ettt e 60
21.6.2. LIFECYCIE ..ot 61

21.7. SErAliZALION ..oevtiiiiii e 61
21.7.1. Serialization of external tyPescc.uuii i 62

21.8. Wiring server side COMPONENESciiiiiiiii e e e e e e e e e e e e aaas 62
21.9. BUS CONFIQUIALION ..eeetiiiiiiiiie ettt e 62
21.9.1. web.xml and appserver configurationcoccoeeviiiiiiiineiin e, 62
21.9.2. ErraiServiCe.proPeITIESciieuu ittt e 63

b3 IS IS T o 1A o] o J o] 0] 0 1= 1 1= 65
21.10. DISPAICREIS . ..viiiiiii e 65
21.10.1. SIMPIEDISPALCNETuiiiiiii e 66
21.10.2. ASYNCDISPALICRETciiitiiiei e 66
21.11. Serviet IMPIEMENLALIONSiiiiiieii e e e e e e 66
21.11.1. DefaultBloCKINGSErVIEtccoiiiiiiiii e 66
21.11.2. TOMCAtCOMELSEIVIELvuiiiiiii e 66

21.11.3. JettyContinUatioNSSErVIETc..uuiiiiiiiiieiiii e 66

21.11.4. JBOSSCOMELSEIVIET ...ccoeviieiiiii et 67
21.11.5. GrizzlyComeEtSErVIEtcoouuiiiiii e e 67
21.11.6. WeDIOGICASYNCSEIVIETciiiiiii e 67
21.12. Debugging Errai APPIICALIONScovuviiiiiiiiieieiii et 67
21.13. What iS EIral BUS? ..oeueiiiiiii ettt e e e e e e eeaens 68
2114, MESSAGING ..neeeettneeieit ettt ettt ettt et ettt ra e enaaas 68
21.14.1. MeSSagiNG OVEIVIEWuiiiiieiiieeiieeie e e e e e e et e e e e e e e e e e eanas 68
21.14.2. MeSsageBuUIlder APL ... 68
21.14.3. Single-Response Conversations & Psuedo-Synchronous Messaging..... 72
21.14.4. Sender Inferred SUDJECESviiiiiiiiiiiii e 73
21.14.5. BroadCastingcccuiieiuieiiiieiiii e e e e e e e 73
21.14.6. Client-to-Client COmMMUNICALIONviiuiiiiiieiiie e 74
21.14.7. Message Routing INformationccccoiviiiiieiiii i 74
21.14.8. MeSSAQING OVEIVIEW ...covuiiiiiiiieteiie ettt e et 75
21.14.9. MessageBuUuilder AP ... 75
21.14.10. Single-Response Conversations & Psuedo-Synchronous Messaging.... 79
21.14.11. Sender Inferred SUDJECESccuiiiiiiiii i, 80
21.14.12. Bro@dCastiNgcceeuuuieiiiiiieeiiii ettt e ettt e ettt e e et e e e e e e e e 80
21.14.13. Message Routing Informationc..cocoiiiiiiiiiiiiiii e 82
21.15. HANAING EITOIS ...uuiiiiiieeeee et ettt e et e e e b e eeeans 83
21.16. ASynchronous MESSAgE TaASKSuueivuuiiiiiieiiiieiiiieeie e e e e e e e e e e e e e e aenns 84
21.17. Repeating TasKSiiiiiiiiieiii e 84
21.18. Remote Procedure Calls (RPC)uiiiiiiii i 85
21.19. QUEBUE SESSIONS ..ietuiitnieiinietii ettt e tet e et e e et e et eean e aat e e et e aetn e eanaeeanaeeenaeennnns 87
201.19.0. SCOPES .ouitiiiitii ettt 87
21.19.2. LIECYCIE v 88
21.19.3. LIfECYCIE ovniiiiii e 88
20,0194, SCOPES ..eueeeiiiet ettt et 88
21.20. SErAlIZALION ...oievtiiee et 89
21.20.1. Serialization of external tyPesc.uuiiiiiiiiieiiii e 90
21.20.2. Serialization of external typescoeeeuieiiii i 90
21.21. Wiring server side COMPONENTSc.uuiiiiiiiieiiii e 91
21.22. BUS CONfIQUIALIONiiiieii e e e e e e 91
21.22.1. web.xml and appserver configurationcccceveiiiiiiiiiiiiinien e, 91
21.22.2. ErraiServiCe.PrOPEILIESuiiiieeiiieeiii et e e e e e e e e e eaaaas 92
21.22.3. ErralAPP.PrOPEILIES ..ovvuiiiiiii ettt ettt e e et e e et e e eai e eees 94
A B = 4 = 172N o] o o] o] 1= 4 1= PN 94
21.22.5. ErraiServiCe.proPertieScoeeuuiiieiiii ettt 94
21.22.6. web.xml and appserver configurationcc.ccoeviiiiieiin i, 97
21.23. DISPALCREIS . .oeiiiii e 98
21.23.1. SIMPIEDISPALCNETvviiiiii e 98
21.23.2. ASYNCDISPALICRETciiiiiiiiii e 98
21.23.3. ASYNCDISPALCNEN ...t 98

Reference Guide

21.23.4. SIMPIEDISPALCNENuuiiiiiiii e 99

21.24. Servilet IMPIEMENTALIONSiiiiiiii e e 99
21.24.1. DefaultBloCKINGSErVIEtccoeiiiiiiiii e 99

21.24.2. TOMCAtCOMELSEIVIELvuiiiiiii e 99

21.24.3. JettyContinUatioNSSEIVIETc..uuiiiiiiiii i 99

21.24.4, JBOSSCOMELSEIVIET ...ccoeviiiiiiiii e 99

21.24.5. GrizzlyComMELSEIVIELociiiiii e 100

21.24.6. WeDBIOGICASYNCSEIVIELuiiiiiiii e 100

21.24.7. DefaultBlocKingServIet ..o 100

21.24.8. GrizzlyCOmMEtSEIVIELciii i 100

21.24.9. JBOSSCOMELSEIVIETiiiiiieiiei e 100

21.24.10. JettyContinuationSSErvlIetcoevuiiiiiiiiiiii e 100

21.24.11. TOMCAtCOMELSEIVIELiiiie e 100

21.24.12. WebIOgQIiCASYNCSEIVIETcovviiiiii e 100

21.25. Debugging Errai APPIICALIONScocuveuiiiiiiiieieii e 100

22, DEVEIOPMENT PrOXY uuiiiiiiiiiii it e e e e e e e e e e e et e et e e et e aaanaes 103
b2 T o - 1 1 T PP 105
23.1. Dependency INJECHIONciiuiiii e e e e e e e e ees 105
23.2. CONLAINET WIMING .. ieeiiiei ittt e et eeeaa s 106
23.2.1. 1€Vl PIOVIAEIS ..covviiiiiiiieeee ettt 106

23.3. COoNLAINET WITING .. iieiiieieii et e e e e b s 107
23.3.1. 1€Vl PrOVIAEIS ..covviiiiiiii ettt 108

23.3.2. 1eVEl PrOVIAEIS ... e 109

23.4. Dependency INJECHIONciiriii e e e e e e e e e ee 110

24. Reporting ProblemMS ... 113
YN =YY (o I 1) (] YA 115

Vi

Preface

1. Document Conventions

2. Feedback

Vii

viii

Chapter 1.

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web
technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC
infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Installation

1.2.1. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the
examples, and for leveraging the quickstart utilities.

» JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

» Apache Maven: http://maven.apache.org/download.html

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

Chapter 2.

Messaging
This section covers the core messaging concepts of the ErraiBus messaging framework.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints
are given string-based names that are referenced by message senders. There is no difference
between sending a message to a client-based service, or sending a message to a server-based
service. In fact, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the client
or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application. It can be tempting
to think of ErraiBus simply as a client-server communication platform, but there is a plethora of
possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and
expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into
having the capabilities it now has today. So keep that in mind when you run up against problems
in the client space that could benefit from runtime federation.

2.2. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCal | back interface.
But before we dive into the details, let look at some use cases first.

Sending Messages with the Client BusiIn order to send a message from a client you need to create
a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we
send it to the subject 'HelloWorldService'.

public class Hellowrld inplements EntryPoint {

/1l Get an instance of the RequestD spatcher
private Request Di spatcher di spatcher = Errai Bus. get Di spatcher();

public void onMbdul eLoad() {
Button button = new Button("Send nessage");

button. addd i ckHandl er (new d i ckHandl er () {
public void ondick(dickEvent event) {

Chapter 2. Messaging

/1 Send a nessage to the 'Hel |l oWrl dService'.
MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWor | dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
. sendNowW t h(di spatcher); // (4)
b

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor | dSer vi ce ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

4. We transmit the message by providing an instance to the Request Di spat cher

@ Note

An astute observer will note that access to the Request Di spat cher differs
within client code and server code. Because the client code does not run within
a container, access to the Request Di spat cher and MessageBus is statically
accessed using the Err ai Bus. get () and Err ai Bus. get Di spat cher () methods.
The server-side code, conversely, runs inside a dependency container for
managing components. It currently uses Guice as the default container, but will
more generically support the JSR-330 specification in the future.

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at
least one receiver. A receiver is as it sounds--it receives the message and does something with it.
Implementing a receiver (also referred to as a service) is as simple as implementing our standard
MessageCallback interface, which is used pervasively across, both client and server code. Let's
begin with server side component that receives messages:

@ber vi ce
public class Hell oWwrl dService inplenents MessageCal | back {
public void call back(Message nessage) ({

MessageBuilder API

Systemout.printin("Hello, Wrldl");

He we declare an extremely simple service. The @er vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server Busin the following example we extend our server side
component to reply with a message when the callback method is invoked. It will create a message
and address it to the subject ' Hel | ovor | dd i ent "

@bervi ce
public class Hell oWrl dService inplenents MessageCal | back {

private Request Di spatcher di spatcher;

@ nj ect
publi c Hel | oWorl dServi ce(Request Di spat cher di saptcher) {
di spatcher = di spatcher;

public void call back(CommandMessage nessage) {
/1l Send a nessage to the 'HelloWrlddient'.
MessageBui | der . cr eat eMessage()
.toSubject("Helloworlddient") // (1)

.signal ling() Il (2)
.wWth("text", "Hi There") Il (3)
. noEr r or Handl i ng() Il (4)
. sendNowW t h(di spat cher); /1 (5)

1)

The above example shows a service which sends a message in response to receiving a message.
Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " Hel | owor 1 dd i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

Chapter 2. Messaging

5. We transmit the message by providing an instance of the Request Di spat cher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously
and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open
COMET channel at all times, these messages are delivered in real time to the client as they are
sent. This provides built-in push messaging for all client services.

public class HelloWwrld inplenents EntryPoint {
private MessageBus bus = Errai Bus. get();

public void onMbdul eLoad() {
[...]

/**

* Declare a local service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be(" Broadcast Recei ver", new MessageCal | back() {
public void cal |l back(CommandMessage nmessage) {

/**

* When a message arrives, extract the "text" field and
* do something with it

*/

String nessageText = nmessage.get(String.class, "text");

1)

In the above example, we declare a new client service called " Br oadcast Recei ver " which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

ConversationsConversations are message exchanges which are between a single client and a
service. They are a fundmentally important concept in ErraiBus, since by default, a message will
be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

@bervi ce
public class Hell oWrl dService inplenents MessageCal | back {

Single-Response Conversations & Psuedo-Synchronous Messaging

public void call back(CommandMessage nessage) {
/1l Send a nessage to the 'HelloWrlddient' on the client that sent us the
/1 the nessage.
MessageBui | der . creat eConver sat i on(message)
.toSubject("HelloWrlddient")
.signal ling()
.wth("text", "H There! W're having a reply!")
.noErrorHandling().reply();
1

Note that the only difference between the example in the previous section (2.4) and this is the use
of the creat eConversation()}}method with {{MessageBuil der .

2.3. Single-Response Conversations & Psuedo-
Synchronous Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. It should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der. cr eat eMessage()
.t oSubj ect (" Conver sati onal Servi ce").signalling()
.Wi th("SoneFi el d", soneVal ue)
. noEr r or Handl i ng()
.repliesTo(new MessageCal | back() {
public void call back(Message nmessage) {
Systemout.println("l received a response");

}
19

See the next section on how to build conversational services that can respond to such messages.

2.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

Chapter 2. Messaging

MessageBui | der . cr eat eMessage()
.toSubj ect (" Qbj ect Servi ce").signalling()
.W th(MessageParts. Repl yTo, "d ient Endpoint")
. noErrorHandl i ng() . sendNowW t h(di spat cher);

And the conversational code on the server (for service ObjectService):

MessageBui | der. creat eConver sati on(message)
. subj ect Provi ded() . si gnal I i ng()
.wWi th("Records", records)
. noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called
bj ect Servi ce " and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

2.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

MessageBui | der. creat eMessage() .
.toSubj ect (" Messageli st ener")
.with("Text", "Hello, fromyour overlords in the cloud")
. noErrorHandl i ng() . sendd obal Wt h(di spat cher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

2.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs
on the server. Since a service advertised on the server is visible to all clients and all clients are
visible to the server, you might already see where we're going with this.

Message Routing Information

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 21.14.13, “Message Routing Information”

2.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
gueues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

The utility classorg. j boss. errai . bus. server. util. ServerBusUi | s contains a utility method
for extracting the String-based SessionID which is used to identify the message queue associated
with any particular client. You may use this method to extract the Sessi onl D from a message so
that you may use it for routing. For example:

public void call back(Message nmessage) {
String sessionld = ServerBusUtil s. get Sessi onl d(message) ;

/'l Record this sessionld sonewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

MessageBui | der . cr eat eMessage()
.toSubj ect ("Cient MessagelLi stener")

.signal ling()
.wi th(MessageParts. Sessi onl D, sessionl d)
Wi th("Message", "We're relaying a nessage!")

. noErrorHandl i ng() . sendNowW t h(di spat cher);

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

Now you're routing from client-to-client!

Chapter 2. Messaging

It may be tempting however, to try and include destination Sessi onl D} }s at the client |evel,
assunming that this will nmake the infrastructure sinpler. But this will not achieve
the desired results, as the bus treats {{SessionlD}}s as transient. Meaning, the
{{ Sessi onl D information is not ever transmitted from bus-to-bus, and therefore is only directly
relevant to the proximate bus.

10

Chapter 3.

Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support
for handling errors is built directly into the MessageBui | der API, utilizing the Error Cal | back
interface. In the examples shown in previous exceptions, error-handing has been glossed over
with aubiquitous usage of the noEr r or Handl i ng() method while building messaging. We chose to
require the explicit use of such a method to remind developers of the fact that they are responsible
for their own error handling, requiring you to explicitty make the decision to forego handling
potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker
identification of problems with your applications if you have error handlers, and generally help you
build more robust code.

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWbr| dServi ce")
.signal l'ing()
.wth("nsg", "H there!")
.errorsHandl edBy(new ErrorCal | back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwabl e) {
t hrowabl e. pri nt StackTrace() ;
return true;
}

})
. sendNowW t h(di spat cher);

The addition of error-handling at first may put off developers as it makes code more verbose and
less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where
the same error-handler can appropriately be shared between multiple different calls.

Error Cal | back error = new ErrorCall back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt StackTrace();
return true;

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWor| dServi ce")
.signal ling()

.with("msg", "H therel")
.errorsHandl edBy(error)
. sendNowW t h(di spat cher);

11

Chapter 3. Handling Errors

A little nicer.

The error handler requires that return a bool ean value. This is to indicate whether or not Errai
should perform the defautl error handling actions it would normally take during a failure. You
will almost always want to return true here, unless you are trying to expicitly supress some
undesirably activity by Errai, such as automatic subject-termination in conversations. But this is
almost never the case.

12

Chapter 4.

Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually
stream data to a remote client or group of clients (or from a client to the server). In cases
like this, you can utilize the repl yRepeating() , replyDel ayed() , sendRepeating() and
sendDel ayed() methods in the MessageBui | der .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate
method (either r epl yDel ayed() or sendDel ayed()).

MessageBui | der . creat eConver sati on(msQ)
.t oSubj ect (" FunSubj ect")
.signal ling()
. noEr r or Handl i ng()
.repl yDel ayed(Ti neUni t. SECONDS, 5); // sends the nmessage after 5 seconds.

or

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect ")
.signalling()
. noError Handl i ng()
. sendDel ayed(request Di spatcher, TinmeUnit.SECONDS, 5); // sends the nessage
after 5 seconds.

13

14

Chapter 5.

Repeating Tasks

A repeating task is sent using one of the MessageBuilder's {{repeatXXX()}}methods. The task will
repeat indefinitely until cancelled (see next section).

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect ")
.signal l'ing()
. Wi thProvided("tinme", new ResourceProvider<String>() {
Si npl eDat eFormat fnt = new Si npl eDat eFor mat (" hh: nm ss");

public String get() {
return fmt.format(new Date(SystemcurrentTimeM I1is());

}
. noEr ror Handl i ng()

. sendRepeat i ngWt h(request Di spat cher, Ti nmeUnit.SECONDS, 1); //sends a nessage
every 1 second

The above example sends a message very 1 second with a message part called{{"time"}},
containing a formatted time string. Note the use of the{{withProvided()}} method; a provided
message part is calculated at the time of transmission as opposed to when the message is
constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the
cancel ()}}method of the {{AsyncTask instance which is returned when creating a task.
Reference to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBui |l der. creat eConver sati on(nessage)
.toSubj ect (" Ti meChannel ") . signalling()
. W t hProvi ded(Ti meServerParts. TineStri ng, new ResourceProvider<String>() {
public String get() {
return String.val ueX (SystemcurrentTineMIIis());

}
}).defaul t ErrorHandl i ng().repl yRepeating(Ti neUnit. M LLI SECONDS, 100);

/'l cancel the task and interrupt it's thread if necessary.
task. cancel (true);

15

16

Chapter 6.

Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy
on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it
to be a more useful and concise approach to exposing services to the clients.

Please Note that this API has changed since version 1.0. RPC services provide a way of creating
type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support
client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service
class which implements it. See the following:

@Renot e
public interface MyRenoteService {
publi ¢ bool ean i sEveryoneHappy();

The @Renot e annotation tells Errai that we'd like to use this interface as a remote interface. The
remote interface must be part of of the GWT client code. It cannot be part of the server-side code,
since the interface will need to be referenced from both the client and server side code. That said,
the implementation of a service is relatively to the point:

@ser vi ce
public class MyRenot eServicel npl inplements MyRenot eService {

publ i ¢ bool ean i sEveryoneHappy() {
/1 blatently lie and say everyone's happy.
return true;

That's all there is to it. You use the same @er vi ce annotation as described in Section 2.4. The
presence of the remote interface tips Errai off as to what you want to do with the class.

Making callsCalling a remote service involves use of the MessageBui | der API. Since all messages
are asynchronous, the actual code for calling the remote service involves the use of a callback,
which we use to receive the response from the remote method. Let's see how it works:

MessageBui | der. creat eCal | (new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
i f (isHappy) Wndow. al ert("Everyone is happy!");

17

Chapter 6. Remote Procedure C...

}, MyRenot eServi ce. cl ass) . i sEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correpond to the
return value of the method on the server. We also reference the remote interface we are calling,
and directly call the method. However, don't be tempted to write code like this :

bool ean bool = MessageBui | der.createCall (...,
MyRenot eSer vi ce. cl ass) . i sEver yoneHappy() ;

The above code will never return a valid result. In fact, it will always return null, false, or 0
depending on the type. This is due to the fact that the method is dispatched asynchronously, as
in, it does not wait for a server response before returning control. The reason we chose to do this,
as opposed to emulate the native GWT-approach, which requires the implementation of remote
and async interfaces, was purely a function of a tradeoff for simplicity.

18

Chapter 7.

Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP
session management. While the queue sessions are tied to, and dependant on HTTP sessions for
the most part (meaning they die when HTTP sessions die), they provide extra layers of session
tracking to make dealing with complex applications built on Errai easier.

7.1. Scopes

One of the things Errai offers is the concept of session and local scopes.

7.1.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplements MessageCal | back {
public void callback(final Message nessage) {
/1 obtain areference tothe | ocal context by referencing the i ncom ng nessage.
Local Cont ext injecti onContext = Local Context. get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("M/Attribute", "Foo");

7.1.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/1 obtain a reference to the session context by referencing the incom ng
nessage.
Sessi onCont ext i njectionContext = SessionContext.get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("M/Attribute”, "Foo");

19

Chapter 7. Queue Sessions

7.2. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

20

Chapter 8.

Serialization

Serialization on the ErraiBus supports serialization within the same scope and limitations
as the default GWT RPC serialization rules. In order to expose your domain objects to
the bus so they can be exported across the bus, you must annotate them with the
org.j boss. errai.bus. server. annot ati ons. ExposeEnt ity annotation. The presence of this
annotation will cause Errai's GWT compiler extensions to generate marshall/demarshall stubs for
the annotated objects at compile-time.

For example:

@ExposeEntity
public class User inplenents java.io.Serializable {
private int userld;

public int getUserld() {
return userld;

public void setUserld(int userld) {
this.userld = userld;

@ Note

All exposed entities must follow Java Bean convensions, and must be in the
classpath both at compile-time and at runtime. Compile-time access to the entities
is required since the creation of the marshalling/demarshalling proxies involves
code generation.

8.1. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if
the entities are located in a third-party library that you do not maintain. As such, you can explicitly
indicate in the configuration that you would like to have this entities made available by declaring
them in the Err ai App. properti es of any module.

errai.bus. serializabl eTypes=org. f co. Foo \
org. bar. Bar \

21

Chapter 8. Serialization

org. f oobi e. Foobi e

22

Chapter 9.

Wiring server side components

By default, ErraiBus uses Google Guice to wire components. However, we plan on standardizing
on JSR-330 Dependency Injection specification in the near future. When deploying services on the
server-side, it is currently possible to obtain references to the MessageBus , Request Di spat cher
, the Errai ServiceConfigurator , and Errai Service by declaring them as injection
dependencies in Service classes, extension components, and session providers.

23

24

Chapter 10.

Bus Configuration

This section contains information on configuring the server-side bus.

10.1. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate
servletimplementation if you wish to use true, asynchronous 1/0. See _section 6.5 _ for information
on the available servlet implementations.

Here's a sample web.xml file:

<web-app xm ns="http://java. sun.coni xm /ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://java. sun. com xn / ns/j avaee
http://java. sun. coml xm / ns/j avaee/ web- app_2_5. xsd"
version="2.5">

<servl et >
<servl et - name>Err ai Servl et </ servl et - nane>
<servl et-class>org.j boss. errai.bus. server. servl et. Def aul t Bl ocki ngSer vl et </
servl et -cl ass>
<l oad- on-startup>1</I| oad- on- st art up>
</servlet>

<servl et - mappi ng>
<servl et - name>Err ai Servl et </ servl et - nane>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

<cont ext - par ane

<par am name>errai . properti es</ param name>

<par am val ue>/ WEB- | NF/ err ai . properti es</ param val ue>
</ cont ext - par an>

<cont ext - par an>

<par am nane>| ogi n. confi g</ par am nane>

<par am val ue>/ VEEB- | NF/ | ogi n. confi g</ par am val ue>
</ cont ext - par an>

<cont ext - par an>

<par am name>users. properti es</ param nanme>

<par am val ue>/ \EB- | NF/ user s. properti es</ param val ue>
</ cont ext - par an

</ web- app>

25

Chapter 10. Bus Configuration

10.2. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

##

Request dispatcher inplenmentation (default is SinpleD spatcher)

Hit

#errai . di spat cher _i npl enent ati on=or g. j boss. errai . bus. server. Si npl eDi spatcher
errai.di spatcher_i npl ement ati on=or g. j boss. errai . bus. server. AsyncDi spat cher

#

Wrker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

#

errai.async. t hread_pool _si ze=5

##t

Worker timeout (in seconds). This defines the time that a single asychronous
process may run,

before the worker pool

termnates it and reclains the thread. This option is only valid when using
t he AsyncDi spat cher

i mpl emrent ati on.

##

errai.async. worker. ti meout =5

Hit

Specify the Authentication/Authorization Adapter to use

##

#errai . aut henti cati on_adapt er=org.jboss. errai.persistence. server.security. H bernat eAut henticati
#errai . aut henti cati on_adapt er=org.jboss. errai.bus. server.security.auth. JAASAdapt er

##t

This property indicates whether or not authentication is required for all
communi cation with the

bus. Set this

to "true' if all access to your application should be secure.

##t

#errai.require_authentication_for_all=true

26

errai.dispatcher.implementation

10.2.1. errai.dispatcher.implementation

The errai . di spatcher _i npl enent ati on defines, as it's hame quite succinctly implies, the
dispatcher implementation to be used by the bus. There are two implementations which come
with Errai out of the box: the Si npl eDi spat cher and the AsyncDi spat cher . See section on
Dispatchers for more information about the differences between the two.

10.2.2. errai.async_thread _pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering
messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

10.2.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming
message before the pool interrupts the thread and returns an error. Adjusting this value does not
have an effect if you are using the SimpleDispatcher.

10.2.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls
should be serviced based on authentication and security principles.

10.2.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests
inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any
user must be authenticated before the bus will deliver any messages from the client to any service.

10.2.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

10.2.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for
extensions.

10.3. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top
of any classpath, the subdirectories are scanned for deployable components. As such, all Errai
application modules in a project should contain an ErraiApp.properties at the root of all classpaths
that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)
that cannot be annotated for serialization. (See the section on serialization for more details)

27

Chapter 10. Bus Configuration

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus. serializabl eTypes=org. f 0o. Foo \
org. bar.Bar \
org. f oobi e. Foobi e

28

Chapter 11.

Dispatchers

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere
and seeing that they are delivered to where they need to go. There are two primary
implementations that are provided with Errai, depending on your needs.

11.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their
endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

11.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.
This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

29

30

Chapter 12.

Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a
universally-compatible blocking implementation that provides fully synchronous communication
to/from the server-side bus. Where this introduces scalability problems, we have implemented
many webserver-specific implementations that take advantage of the various proprietary APIs to
provide true asynchrony.

These inlcuded implementations are packaged at: or g. j boss. errai . bus. server. servl et

12.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides
purely synchronous request handling and should work in virtually any servlet container, unless
there are restrictions on putting threads into sleep states.

12.2. TomcatCometServlet

The Tomcat AlO implementation of our servlet allows Errai to take advantage of Tomcat's event-
based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is
dependant on the Tomcat container being configured to support AlO using either it's NIO or APR
connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

12.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

12.4. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve
scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use
of this implementation requires use of the APR (Apache Portable Runtime).

12.5. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

12.6. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

31

32

Chapter 13.

Debugging Erral Applications

Errai includes a bus monitoring application, which allows you to monitor all of the message
exchange activity on the bus in order to help track down any potential problems It allows you to
inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your
application's dependencies. When you run your application in development mode, you will simply
need to add the following JVM options to your run configuration in order to launch the monitor: -
Derrai.tools.bus_nonitor_attach=true

Figure 13.1. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side
of the main screen lists the services that are currently available, and the right side is the service-
explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the
service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 13.2. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus
since the monitor became active. You do not need to actually have each specific monitor window
open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a
message part will bring up the object inspector, which will allow you to explore the state of any
objects contained within the message, not unlike the object inspectors provided by debuggers in
your favorite IDE. This can be a powerful tool for looking under the covers of your application.

33

34

Chapter 14.

Downloads

The distribution packages can be downloaded from jboss.org http://jboss.org/errail
Downloads.html

35

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

36

Chapter 15.

Sources

Errai is currently managed using Github. You can clone our repositories from http://github.com/
errai .

37

http://github.com/errai
http://github.com/errai

38

Chapter 16.

License and EULA

Errai is distributed under the terms of the the Apache License, Version 2.0. See the full Apache
license text [http://www.apache.org/licenses/LICENSE-2.0] .

39

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

40

Chapter 17.

Introduction

17.1. What is it

Errai is a GWT-based framework for building rich web applications using next-generation web
technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC
infrastructure with true, uniform, asynchronous messaging across the client and server.

17.2. Installation

17.2.1. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the
examples, and for leveraging the quickstart utilities.

» JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

» Apache Maven: http://maven.apache.org/download.html

41

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

42

Chapter 18.

License and EULA

Errai is distributed under the terms of the the Apache License, Version 2.0. See the full Apache
license text [http://www.apache.org/licenses/LICENSE-2.0] .

43

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

44

Chapter 19.

Downloads

The distribution packages can be downloaded from jboss.org http://jboss.org/errail
Downloads.html

45

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

46

Chapter 20.

Sources

Errai is currently managed using Github. You can clone our repositories from http://github.com/
errai .

47

http://github.com/errai
http://github.com/errai

48

Chapter 21.

Erral Bus

21.1. Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

21.1.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints
are given string-based names that are referenced by message senders. There is no difference
between sending a message to a client-based service, or sending a message to a server-based
service. In fact, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the client
or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application. It can be tempting
to think of ErraiBus simply as a client-server communication platform, but there is a plethora of
possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and
expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into
having the capabilities it now has today. So keep that in mind when you run up against problems
in the client space that could benefit from runtime federation.

21.1.2. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCal | back interface.
But before we dive into the details, let look at some use cases first.

Sending Messages with the Client BusiIn order to send a message from a client you need to create
a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we
send it to the subject 'HelloWorldService'.

public class Hellowrld inplements EntryPoint {

/1l Get an instance of the RequestDi spatcher
private Request Di spatcher di spatcher = Errai Bus. get Di spatcher();

public void onMbdul eLoad() {

49

Chapter 21. Errai Bus

Button button = new Button("Send nessage");

button. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) {
/1 Send a nmessage to the 'Hell oWrl dService'.
MessageBui | der . cr eat eMessage()
.toSubj ect ("Hel | oWor | dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
. sendNowW t h(di spatcher); // (4)
b

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor | dSer vi ce ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

4. We transmit the message by providing an instance to the Request Di spat cher

@ Note

An astute observer will note that access to the Request Di spat cher differs
within client code and server code. Because the client code does not run within
a container, access to the Request Di spat cher and MessageBus is statically
accessed using the Err ai Bus. get () and Err ai Bus. get Di spat cher () methods.
The server-side code, conversely, runs inside a dependency container for
managing components. It currently uses Guice as the default container, but will
more generically support the JSR-330 specification in the future.

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at
least one receiver. A receiver is as it sounds--it receives the message and does something with it.
Implementing a receiver (also referred to as a service) is as simple as implementing our standard
MessageCallback interface, which is used pervasively across, both client and server code. Let's
begin with server side component that receives messages:

50

MessageBuilder API

@bervi ce
public class Hell oWrl dService inplenents MessageCal | back {
public void call back(Message nmessage) {
Systemout.printin("Hello, Wrld!'");

He we declare an extremely simple service. The @er vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server Busin the following example we extend our server side
component to reply with a message when the callback method is invoked. It will create a message
and address it to the subject ' Hel | owor | dd i ent "

@er vi ce
public class Hell oWwrl dService inplements MessageCal | back {

private Request D spatcher di spatcher;

@ nj ect
publ i c Hel | oWrl dServi ce(Request Di spat cher di saptcher) {
di spat cher = di spatcher;

public void call back(CommandMessage nessage) {
/1 Send a nessage to the 'HelloWwrlddient'.
MessageBui | der . cr eat eMessage()
.toSubject("HellowrldCient") // (1)

.signal l'ing() Il (2)
.with("text", "H There") Il (3)
. NoError Handl i ng() Il (4)
. sendNowW t h(di spat cher); /'l (5)

1),

The above example shows a service which sends a message in response to receiving a message.
Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor 1 dC i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols.

51

Chapter 21. Errai Bus

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

5. We transmit the message by providing an instance of the Request Di spat cher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously
and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open
COMET channel at all times, these messages are delivered in real time to the client as they are
sent. This provides built-in push messaging for all client services.

public class Hellowrld inplenments EntryPoint {
private MessageBus bus = Errai Bus.get();

public void onModul eLoad() {
[-..]

/**

* Declare a local service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be(" Broadcast Recei ver", new MessageCal | back() {
public void cal |l back(CommandMessage nmessage) {

/**

* \Wen a nessage arrives, extract the "text" field and
* do something with it

*/

String nmessageText = message.get (String.class, "text");

1)

In the above example, we declare a new client service called " Br oadcast Recei ver " which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

ConversationsConversations are message exchanges which are between a single client and a
service. They are a fundmentally important concept in ErraiBus, since by default, a message will
be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending
back is received by the same client which sent the incoming message. A simple example:

52

Single-Response Conversations & Psuedo-Synchronous Messaging

@bervi ce
public class Hell oWrl dService inplenents MessageCal | back {
public void call back(CommandMessage nessage) {
/Il Send a nessage to the 'HelloWrlddient' on the client that sent us the
/'l the nessage
MessageBui | der . creat eConver sati on(message)
.toSubject("HelloWorlddient")
.signal ling()
.wth("text", "H There! W're having a reply!")
. noErrorHandling().reply();
1

Note that the only difference between the example in the previous section (2.4) and this is the use
of the cr eat eConversation()}}met hod with {{MessageBuil der .

21.1.3. Single-Response Conversations & Psuedo-Synchronous
Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. It should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der . cr eat eMessage()
.toSubj ect (" Conversati onal Servi ce").signalling()
. Wi th("SoneFi el d", soneVal ue)
. noEr r or Handl i ng()
.repliesTo(new MessageCal | back() {
public void call back(Message nmessage) {
Systemout.println("l received a response");

}
})

See the next section on how to build conversational services that can respond to such messages.

21.1.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

53

Chapter 21. Errai Bus

Consider the following client side code:

MessageBui | der . cr eat eMessage()
.toSubj ect (" Obj ect Service").signalling()
.wi th(MessageParts. Repl yTo, "d ient Endpoint")
. noError Handl i ng() . sendNowW t h(di spat cher);

And the conversational code on the server (for service ObjectService):

MessageBui | der . cr eat eConver sat i on(message)
. subj ect Provi ded() . si gnal i ng()
.wi th("Records", records)
.noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called
(bj ect Ser vi ce " and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

21.1.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

MessageBui | der . cr eat eMessage() .
.toSubj ect (" Messageli st ener")
.Wth("Text", "Hello, fromyour overlords in the cloud")
. noErrorHandl i ng() . sendd obal Wt h(di spat cher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

21.1.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

54

Message Routing Information

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs
on the server. Since a service advertised on the server is visible to all clients and all clients are
visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 21.14.13, “Message Routing Information”

21.1.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
queues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class or g. j boss. errai . bus. server. util. ServerBusUt i | s contains a utility method
for extracting the String-based SessionID which is used to identify the message queue associated
with any particular client. You may use this method to extract the Sessi onl D from a message so
that you may use it for routing. For example:

public void call back(Message nmessage) {
String sessionld = ServerBusUtils. get Sessi onl d(message) ;

/!l Record this sessionld sonmewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

MessageBui | der . cr eat eMessage()
.toSubj ect ("C i ent Messageli st ener")

.signal l'i ng()
. Wi th(MessageParts. Sessi onl D, sessi onl d)
.with("Message", "W're relaying a nessage!")

. noEr ror Handl i ng() . sendNowW t h(di spat cher);

55

Chapter 21. Errai Bus

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

Now you're routing from client-to-client!

It may be tempting however, to try and include destination Sessi onl D} }s at the client |evel,
assunming that this will nake the infrastructure sinpler. But this will not achieve
the desired results, as the bus treats {{SessionlD}}s as transient. Meaning, the
{{Sessi onl D information is not ever transmitted from bus-to-bus, and therefore is only directly
relevant to the proximate bus.

21.2. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support
for handling errors is built directly into the MessageBui | der API, utilizing the Error Cal | back
interface. In the examples shown in previous exceptions, error-handing has been glossed over
with aubiquitous usage of the noEr r or Handl i ng() method while building messaging. We chose to
require the explicit use of such a method to remind developers of the fact that they are responsible
for their own error handling, requiring you to explicitly make the decision to forego handling
potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker
identification of problems with your applications if you have error handlers, and generally help you
build more robust code.

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWor| dServi ce")
.signal ling()
.wWth("nsg", "H there!")
.errorsHandl edBy(new ErrorCal | back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt StackTrace();
return true;
}

})
. sendNowW t h(di spat cher);

The addition of error-handling at first may put off developers as it makes code more verbose and
less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where
the same error-handler can appropriately be shared between multiple different calls.

Error Cal | back error = new ErrorCal |l back() {
publi c bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt St ackTrace();
return true;

56

Asynchronous Message Tasks

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWor| dServi ce")
.signalling()

.wth("nsg", "H there!")
.errorsHandl edBy(error)
. sendNowW t h(di spat cher);

A little nicer.

The error handler requires that return a bool ean value. This is to indicate whether or not Errai
should perform the defautl error handling actions it would normally take during a failure. You
will almost always want to return true here, unless you are trying to expicitly supress some
undesirably activity by Errai, such as automatic subject-termination in conversations. But this is
almost never the case.

21.3. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually
stream data to a remote client or group of clients (or from a client to the server). In cases
like this, you can utilize the repl yRepeating() , replyDel ayed() , sendRepeating() and
sendDel ayed() methods in the MessageBui | der .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate
method (either r epl yDel ayed() or sendDel ayed()).

MessageBui | der. cr eat eConver sati on(nsg)
.t oSubj ect (" FunSubj ect ")
.signal ling()
. noEr r or Handl i ng()
.repl yDel ayed(Ti meUni t. SECONDS, 5); // sends the nessage after 5 seconds.

or

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect")
.signal l'ing()
. noError Handl i ng()
. sendDel ayed(request Di spatcher, TinmeUnit.SECONDS, 5); // sends the nessage
after 5 seconds.

57

Chapter 21. Errai Bus

21.4. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's {{repeatXXX()}}methods. The task will
repeat indefinitely until cancelled (see next section).

MessageBui | der . cr eat eMessage()
. toSubj ect (" FunSubj ect ")
.signal ling()
.W thProvi ded("time", new ResourceProvider<String>() {
Si npl eDat eFormat fnmt = new Si npl eDat eFor mat (" hh: nm ss") ;

public String get() {
return fnt.format(new Date(SystemcurrentTimeM I1lis());

}
. noError Handl i ng()

. sendRepeat i ngW t h(request Di spat cher, Ti neUnit.SECONDS, 1); //sends a nessage
every 1 second

The above example sends a message very 1 second with a message part called{{"time"}},
containing a formatted time string. Note the use of the{{withProvided()}} method; a provided
message part is calculated at the time of transmission as opposed to when the message is
constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the
cancel ()}}method of the {{AsyncTask instance which is returned when creating a task.
Reference to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuil der. creat eConversati on(nmessage)
.toSubj ect (" Ti neChannel ") . si gnal | i ng()
. Wit hProvi ded(Ti neServerParts. Ti neStri ng, new ResourceProvi der<String>() {
public String get() {
return String.valueO (SystemcurrentTimeM I lis());

}
}) . defaul t ErrorHandl i ng().repl yRepeati ng(Ti meUnit. M LLI SECONDS, 100);

/'l cancel the task and interrupt it's thread if necessary.
t ask. cancel (true);

58

Remote Procedure Calls (RPC)

21.5. Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy
on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it
to be a more useful and concise approach to exposing services to the clients.

Please Note that this APl has changed since version 1.0. RPC services provide a way of creating
type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support
client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service
class which implements it. See the following:

@Renvot e
public interface MyRenoteService {
publ i ¢ bool ean i sEveryoneHappy();

The @renot e annotation tells Errai that we'd like to use this interface as a remote interface. The
remote interface must be part of of the GWT client code. It cannot be part of the server-side code,
since the interface will need to be referenced from both the client and server side code. That said,
the implementation of a service is relatively to the point:

@bervi ce
public class MyRenot eServicel npl inplements M/Renot eService {

publ i c bool ean i sEveryoneHappy() {
/'l blatently lie and say everyone's happy.
return true;

That's all there is to it. You use the same @er vi ce annotation as described in Section 2.4. The
presence of the remote interface tips Errai off as to what you want to do with the class.

Making callsCalling a remote service involves use of the MessageBui | der API. Since all messages
are asynchronous, the actual code for calling the remote service involves the use of a callback,
which we use to receive the response from the remote method. Let's see how it works:

MessageBui | der. creat eCal | (new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) {
i f (isHappy) Wndow. al ert("Everyone is happy!");

59

Chapter 21. Errai Bus

}, MyRenot eServi ce. cl ass) . i sEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correpond to the
return value of the method on the server. We also reference the remote interface we are calling,
and directly call the method. However, don't be tempted to write code like this :

bool ean bool = MessageBui | der.createCall (...,
MyRenot eSer vi ce. cl ass) . i sEver yoneHappy() ;

The above code will never return a valid result. In fact, it will always return null, false, or 0
depending on the type. This is due to the fact that the method is dispatched asynchronously, as
in, it does not wait for a server response before returning control. The reason we chose to do this,
as opposed to emulate the native GWT-approach, which requires the implementation of remote
and async interfaces, was purely a function of a tradeoff for simplicity.

21.6. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP
session management. While the queue sessions are tied to, and dependant on HTTP sessions for
the most part (meaning they die when HTTP sessions die), they provide extra layers of session
tracking to make dealing with complex applications built on Errai easier.

21.6.1. Scopes
One of the things Errai offers is the concept of session and local scopes.

21.6.1.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplements MessageCal | back {
public void callback(final Message nessage) {
/'l obtain areference tothe | ocal context by referencing the i ncom ng nessage.
Local Cont ext injectionContext = Local Context.get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("M/Attribute", "Foo");

60

Lifecycle

21.6.1.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenments MessageCal | back {
public void callback(final Message nessage) {
/] obtain a reference to the session context by referencing the inconing
message.
Sessi onCont ext i njectionContext = SessionContext.get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

21.6.2. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

21.7. Serialization

Serialization on the ErraiBus supports serialization within the same scope and limitations
as the default GWT RPC serialization rules. In order to expose your domain objects to
the bus so they can be exported across the bus, you must annotate them with the
org.j boss. errai.bus. server. annotati ons. ExposeEnt ity annotation. The presence of this
annotation will cause Errai's GWT compiler extensions to generate marshall/demarshall stubs for
the annotated objects at compile-time.

For example:

@xposeEntity

public class User inplenments java.io.Serializable {
private int userld;
public int getUserld() {

return userld;

public void setUserld(int userld) {

61

Chapter 21. Errai Bus

this.userld = userld;

@ Note
All exposed entities must follow Java Bean convensions, and must be in the
classpath both at compile-time and at runtime. Compile-time access to the entities
is required since the creation of the marshalling/demarshalling proxies involves
code generation.

21.7.1. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if
the entities are located in a third-party library that you do not maintain. As such, you can explicitly
indicate in the configuration that you would like to have this entities made available by declaring
them in the Err ai App. properti es of any module.

errai . bus. serializabl eTypes=org. f 0o. Foo \
org. bar.Bar \
org. f oobi e. Foohi e

21.8. Wiring server side components

By default, ErraiBus uses Google Guice to wire components. However, we plan on standardizing
on JSR-330 Dependency Injection specification in the near future. When deploying services on the
server-side, it is currently possible to obtain references to the MessageBus , Request Di spat cher
, the Errai ServiceConfigurator , and Errai Service by declaring them as injection
dependencies in Service classes, extension components, and session providers.

21.9. Bus Configuration

This section contains information on configuring the server-side bus.

21.9.1. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate
servletimplementation if you wish to use true, asynchronous I/0. See _section 6.5 _ for information
on the available servlet implementations.

Here's a sample web.xml file:

62

ErraiService.properties

<web-app xm ns="http://java. sun.conl xm / ns/javaee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocation="http://java. sun. coni xnm / ns/j avaee
http://java. sun. coni xm / ns/ j avaee/ web- app_2_5. xsd"
versi on="2.5">

<servl et >
<servl et - nane>Err ai Servl et </ servl et - name>
<servl et-class>org.j boss. errai.bus. server. servl et. Def aul t Bl ocki ngSer vl et </
servl et-cl ass>
<l oad-on-startup>1</| oad-on-start up>
</servl et >

<servl et - mappi ng>
<servl et - nane>Err ai Servl et </ servl et - name>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

<cont ext - par an>

<par am nane>errai . properti es</ par am nane>

<par am val ue>/ \EB- | NF/ err ai . properti es</ param val ue>
</ cont ext - par an

<cont ext - par an»

<par am nanme>| ogi n. conf i g</ par am nane>

<par am val ue>/ \EEB- | NF/ | ogi n. confi g</ par am val ue>
</ cont ext - par an>

<cont ext - par ane

<par am name>users. properti es</ par am name>

<par am val ue>/ VEB- | NF/ user s. properti es</ param val ue>
</ cont ext - par an®

</ web- app>

21.9.2. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

##

Request dispatcher inplenmentation (default is SinpleD spatcher)

##t

#errai . di spat cher_i npl emrent ati on=or g. j boss. errai . bus. server. Si npl eDi spat cher
errai.di spatcher_i npl ement ati on=org. j boss. errai . bus. server. AsyncD spat cher

63

Chapter 21. Errai Bus

#

Worker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

##

errai.async. t hread_pool _si ze=5

##t

Worker tinmeout (in seconds). This defines the time that a single asychronous
process may run,

bef ore the worker pool

termnates it and reclains the thread. This option is only valid when using
the AsyncDi spat cher

i mpl emrent ati on.

##t

errai.async. worker. ti meout =5

Hit

Specify the Authentication/Authorization Adapter to use

##

#errai . aut henti cati on_adapt er=org.jboss. errai. persistence. server.security. H bernat eAut henticati
#errai . aut henti cati on_adapter=org.jboss. errai.bus. server.security.auth. JAASAdapt er

##t

This property indicates whether or not authentication is required for all
communi cation with the

bus. Set this

to "true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

21.9.2.1. errai.dispatcher.implementation
The errai . di spatcher _i npl enent ati on defines, as it's name quite succinctly implies, the
dispatcher implementation to be used by the bus. There are two implementations which come

with Errai out of the box: the Si npl eDi spat cher and the AsyncDi spat cher . See section on
Dispatchers for more information about the differences between the two.

21.9.2.2. errai.async_thread _pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering
messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

64

ErraiApp.properties

21.9.2.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming
message before the pool interrupts the thread and returns an error. Adjusting this value does not
have an effect if you are using the SimpleDispatcher.

21.9.2.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls
should be serviced based on authentication and security principles.

21.9.2.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests
inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any
user must be authenticated before the bus will deliver any messages from the client to any service.

21.9.2.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

21.9.2.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for
extensions.

21.9.3. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top
of any classpath, the subdirectories are scanned for deployable components. As such, all Errai
application modules in a project should contain an ErraiApp.properties at the root of all classpaths
that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)
that cannot be annotated for serialization. (See the section on serialization for more details)

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus. serializabl eTypes=org. f 0oo. Foo \
org. bar.Bar \
org. f oobi e. Foobi e

21.10. Dispatchers

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere
and seeing that they are delivered to where they need to go. There are two primary
implementations that are provided with Errai, depending on your needs.

65

Chapter 21. Errai Bus

21.10.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their
endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

21.10.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.
This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

21.11. Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a
universally-compatible blocking implementation that provides fully synchronous communication
to/from the server-side bus. Where this introduces scalability problems, we have implemented
many webserver-specific implementations that take advantage of the various proprietary APIs to
provide true asynchrony.

These inlcuded implementations are packaged at: or g. j boss. errai . bus. server. servl et

21.11.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides
purely synchronous request handling and should work in virtually any servlet container, unless
there are restrictions on putting threads into sleep states.

21.11.2. TomcatCometServlet

The Tomcat AlO implementation of our servlet allows Errai to take advantage of Tomcat's event-
based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is
dependant on the Tomcat container being configured to support AlO using either it's NIO or APR
connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

21.11.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

66

JBossCometServlet

21.11.4. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve
scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use
of this implementation requires use of the APR (Apache Portable Runtime).

21.11.5. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

21.11.6. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

21.12. Debugging Errai Applications

Errai includes a bus monitoring application, which allows you to monitor all of the message
exchange activity on the bus in order to help track down any potential problems It allows you to
inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your
application's dependencies. When you run your application in development mode, you will simply
need to add the following JVM options to your run configuration in order to launch the monitor: -
Derrai.tool s. bus_nonitor_attach=true

Figure 21.1. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side
of the main screen lists the services that are currently available, and the right side is the service-
explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the
service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 21.2. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus
since the monitor became active. You do not need to actually have each specific monitor window
open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a
message part will bring up the object inspector, which will allow you to explore the state of any
objects contained within the message, not unlike the object inspectors provided by debuggers in
your favorite IDE. This can be a powerful tool for looking under the covers of your application.

67

Chapter 21. Errai Bus

21.13. What is Errai Bus?

ErraiBus forms the backbone of the Errai framework's approach to application design. Most
importantly, it provides a straight-forward approach to a complex problem space. Providing
common APIs across the client and server, developers will have no trouble working with
complex messaging scenarios from building instant messaging clients, stock tickers, to monitoring
instruments. There's no more messing with RPC APIs, or unweildy AJAX or COMET frameworks.
We've built it all in to one, consice messaging framework. It's single-paradigm, and it's fun to work
with.

21.14. Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

21.14.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints
are given string-based names that are referenced by message senders. There is no difference
between sending a message to a client-based service, or sending a message to a server-based
service. In fact, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the client
or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application. It can be tempting
to think of ErraiBus simply as a client-server communication platform, but there is a plethora of
possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and
expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into
having the capabilities it now has today. So keep that in mind when you run up against problems
in the client space that could benefit from runtime federation.

21.14.2. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCal | back interface.
But before we dive into the detalils, let look at some use cases first.

Sending Messages with the Client BusiIn order to send a message from a client you need to create
a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we
send it to the subject 'HelloWorldService'.

68

MessageBuilder API

public class HelloWwrld i npl ements EntryPoint {

/1l Get an instance of the RequestDi spatcher
private RequestDi spatcher dispatcher = Errai Bus. get D spatcher();

public void onMdul eLoad() ({
Button button = new Button("Send nessage");

but t on. addd i ckHandl er (new C i ckHandl er () {
public void onCick(dickEvent event) {
/1l Send a nessage to the 'Hell oWrl dService'.
MessageBui | der. cr eat eMessage()
.toSubj ect ("Hel | oWor| dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
.sendNowW t h(di spatcher); // (4)
1)

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:
1. We specify the subject we wish to send a message to. In this case, " Hel | oWor | dSer vi ce ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

4. We transmit the message by providing an instance to the Request Di spat cher

69

Chapter 21. Errai Bus

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at
least one receiver. A receiver is as it sounds--it receives the message and does something with it.
Implementing a receiver (also referred to as a service) is as simple as implementing our standard
MessageCallback interface, which is used pervasively across, both client and server code. Let's
begin with server side component that receives messages:

@ervi ce
public class Hell oWwrl dService inplements MessageCal | back {
public void call back(Message nmessage) {
Systemout.println("Hello, Wrldl");

He we declare an extremely simple service. The @er vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server Busin the following example we extend our server side
component to reply with a message when the callback method is invoked. It will create a message
and address it to the subject ' Hel | owor | dd i ent "

@er vi ce
public class Hell oWwrl dService inplenents MessageCal | back {

private Request Di spatcher di spatcher;

@ nj ect
public Hel | oWr| dServi ce(Request Di spat cher di saptcher) {
di spat cher = di spatcher;

public void call back(CommandMessage nessage) {
/1 Send a nmessage to the 'HelloWrlddient'.
MessageBui | der . cr eat eMessage()
.toSubj ect ("Hel lowsrlddient") // (1)

.signal l'ing() Il (2)
.with("text", "H There") 11 (3)
. noEr r or Handl i ng() I (4)
. sendNowW t h(di spat cher); Il (5)

1),

The above example shows a service which sends a message in response to receiving a message.
Here's what's going on:

70

MessageBuilder API

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor 1 dd i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

5. We transmit the message by providing an instance of the Request Di spat cher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously
and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open
COMET channel at all times, these messages are delivered in real time to the client as they are
sent. This provides built-in push messaging for all client services.

public class Hellowrld inplements EntryPoint {
private MessageBus bus = Errai Bus.get();

public void onMbdul eLoad() {
[-..]

/**

* Declare a local service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be("Broadcast Recei ver", new MessageCal | back() {
public void cal | back(CommandMessage message) {

/**

* When a nmessage arrives, extract the "text" field and
* do something with it

*/

String nmessageText = message.get(String.class, "text");

1)

In the above example, we declare a new client service called " Br oadcast Recei ver " which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

71

Chapter 21. Errai Bus

ConversationsConversations are message exchanges which are between a single client and a
service. They are a fundmentally important concept in ErraiBus, since by default, a message will
be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending
back is received by the same client which sent the incoming message. A simple example:

@ervi ce
public class Hell oWwrl dService inplements MessageCal | back {
public void call back(CommandMessage nessage) {
/1 Send a nmessage to the 'HelloWwrlddient' on the client that sent us the
/1 the nessage.
MessageBui | der. creat eConver sati on(nmessage)
.toSubject("HelloWorlddient")
.signal ling()
.Wwith("text", "H There! W're having a reply!")
.noErrorHandling().reply();
B

Note that the only difference between the example in the previous section (2.4) and this is the use
of the creat eConversation()}}nmethod with {{MessageBuil der .

21.14.3. Single-Response Conversations & Psuedo-
Synchronous Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. It should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der. cr eat eMessage()
.t oSubj ect (" Conver sati onal Servi ce").signalling()
.Wi th("SoneFi el d", soneVal ue)
. noEr r or Handl i ng()
.repliesTo(new MessageCal | back() {
public void call back(Message nmessage) {
Systemout.println("l received a response");

72

Sender Inferred Subjects

See the next section on how to build conversational services that can respond to such messages.

21.14.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBui | der . cr eat eMessage()
.toSubj ect (" Qoj ect Servi ce").signalling()
.W th(MessageParts. Repl yTo, "d ient Endpoint")
. noErrorHandl i ng() . sendNowW t h(di spat cher);

And the conversational code on the server (for service ObjectService):

MessageBui | der . creat eConver sati on(message)
. subj ect Provi ded() . si gnal I i ng()
.wi th("Records", records)
. noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called
bj ect Servi ce " and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

21.14.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

MessageBui | der . cr eat eMessage() .
.t oSubj ect (" MessagelLi st ener")
.wWith("Text", "Hello, fromyour overlords in the cloud")
. noError Handl i ng() . sendd obal Wt h(di spatcher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

73

Chapter 21. Errai Bus

21.14.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs
on the server. Since a service advertised on the server is visible to all clients and all clients are
visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 21.14.13, “Message Routing Information”

21.14.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
queues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class or g. j boss. errai . bus. server. util. ServerBusUt i | s contains a utility method
for extracting the String-based SessionID which is used to identify the message queue associated
with any particular client. You may use this method to extract the Sessi onl D from a message so
that you may use it for routing. For example:

public void call back(Message nmessage) {
String sessionld = ServerBusUtil s. get Sessi onl d(nessage) ;

/!l Record this sessionld sonmewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

74

Messaging Overview

MessageBui | der . cr eat eMessage()
.toSubj ect ("C i ent MessagelLi stener")

.signal ling()
.w th(MessageParts. Sessi onl D, sessi onl d)
.wi th("Message", "W're relaying a nessage!")

. noError Handl i ng() . sendNowW t h(di spat cher);

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

Now you're routing from client-to-client!

It may be tempting however, to try and include destination Sessi onl D} }s at the client |evel,
assunming that this will nake the infrastructure sinpler. But this will not achieve
the desired results, as the bus treats {{SessionlD}}s as transient. Meaning, the
{{Sessi onl D information is not ever transmitted from bus-to-bus, and therefore is only directly
relevant to the proximate bus.

21.14.8. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints
are given string-based names that are referenced by message senders. There is no difference
between sending a message to a client-based service, or sending a message to a server-based
service. In fact, a service of the same name may co-exist on both the client and the server and
both will receive all messages bound for that service name, whether they are sent from the client
or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your
application to provide a message-based infrastructure for your web application. It can be tempting
to think of ErraiBus simply as a client-server communication platform, but there is a plethora of
possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and
expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into
having the capabilities it now has today. So keep that in mind when you run up against problems
in the client space that could benefit from runtime federation.

21.14.9. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder
API, that is used for constructing messages. All three major message patterns can be constructed
from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCal | back interface.

But before we dive into the details, let look at some use cases first.

75

Chapter 21. Errai Bus

Sending Messages with the Client Busin order to send a message from a client you need to create
a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we
send it to the subject 'HelloWorldService'.

public class HelloWwrld inplenents EntryPoint {

/'l Get an instance of the RequestDi spatcher
private RequestDi spatcher dispatcher = Errai Bus. get Di spatcher();

public void onMbdul eLoad() {
Button button = new Button("Send nmessage");

butt on. addd i ckHandl er (new C i ckHandl er () {
public void ondick(dickEvent event) {
/1 Send a nessage to the 'Hell oWrl dService'.
MessageBui | der . cr eat eMessage()
.toSubj ect ("Hel | oWorl dService") // (1)
.signalling() // (2)
.noErrorHandling() // (3)
. sendNowW t h(di spatcher); // (4)
1

In the above example we build and send a message every time the button is clicked. Here's an
explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " Hel | oWor | dServi ce "

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

4. We transmit the message by providing an instance to the Request Di spat cher

@ Note

An astute observer will note that access to the Request Di spat cher differs
within client code and server code. Because the client code does not run within
a container, access to the Request Di spat cher and MessageBus is statically

76

MessageBuilder API

accessed using the Err ai Bus. get () and Err ai Bus. get Di spat cher () methods.
The server-side code, conversely, runs inside a dependency container for
managing components. It currently uses Guice as the default container, but will
more generically support the JSR-330 specification in the future.

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at
least one receiver. A receiver is as it sounds--it receives the message and does something with it.
Implementing a receiver (also referred to as a service) is as simple as implementing our standard
MessageCallback interface, which is used pervasively across, both client and server code. Let's
begin with server side component that receives messages:

@bervi ce
public class Hell oWrl dService inplenents MessageCal | back {
public void call back(Message nmessage) {
Systemout.printin("Hello, Wrld!");

He we declare an extremely simple service. The @Ber vi ce annotation provides a convenient,
meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server Busin the following example we extend our server side
component to reply with a message when the callback method is invoked. It will create a message
and address it to the subject ' Hel | owor 1 dd i ent "

@ber vi ce
public class Hell oWrl dService inplenents MessageCal | back {

private Request Di spatcher di spatcher;

@ nj ect
publ i c Hel | oWorl dServi ce(Request Di spat cher di saptcher) {
di spat cher = di spatcher;

public void call back(CommandMessage nessage) {
/! Send a nessage to the 'HelloWrldCdient'.
MessageBui | der . cr eat eMessage()
.toSubject("HelloWorlddient") // (1)

.signal ling() Il (2)
.wth("text", "H There") Il (3)
. noEr r or Handl i ng() Il (4)
. sendNowW t h(di spat cher); /'l (5)

1),

77

Chapter 21. Errai Bus

The above example shows a service which sends a message in response to receiving a message.
Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " Hel | owor1 dd i ent ". We
are sending this message to all clients which are listening in on this subject. For information on
how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying
command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an Error Cal | back to deal with errors for this
message.

5. We transmit the message by providing an instance of the Request Di spat cher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously
and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open
COMET channel at all times, these messages are delivered in real time to the client as they are
sent. This provides built-in push messaging for all client services.

public class Hellowrld inplements EntryPoint {
private MessageBus bus = Errai Bus.get();

public void onMbdul eLoad() {
[-..]

/**
* Declare a local service to receive nessages on the subject
* "Broadcast Recei ver".
*/
bus. subscri be("Broadcast Recei ver", new MessageCal | back() {
public void cal | back(CommandMessage message) {
/**
* \When a nessage arrives, extract the "text" field and
* do something with it
*/
String nmessageText = message.get (String.class, "text");

1)

78

Single-Response Conversations & Psuedo-Synchronous Messaging

In the above example, we declare a new client service called " Br oadcast Recei ver " which can
now accept both local messages and remote messages from the server bus. The service will be
available in the client to receive messages as long the client bus is and the service is not explicitly
de-registered.

ConversationsConversations are message exchanges which are between a single client and a
service. They are a fundmentally important concept in ErraiBus, since by default, a message will
be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending
back is received by the same client which sent the incoming message. A simple example:

@ber vi ce
public class Hell oWwrl dService inplements MessageCal | back {
public void call back(CommandMessage nessage) {
/1 Send a nessage to the 'HelloWwrlddient' on the client that sent us the
/'l the nessage.
MessageBui | der . cr eat eConver sat i on(message)
.toSubject("HelloWrlddient")
.signal ling()
.with("text", "H There! W're having a reply!")
.noErrorHandling().reply();
1

Note that the only difference between the example in the previous section (2.4) and this is the use
of the creat eConversation()}}method with {{MessageBuil der .

21.14.10. Single-Response Conversations & Psuedo-
Synchronous Messaging

Itis possible to contruct a message and a default response handler as part of the MessageBui | der
API. It should be noted, that multiple replies will not be possible and will result an exception
if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous
conversive things.

You can do this by specifying a MessageCal | back using the repliesTo() method in the
MessageBui | der API after specifying the error handling of the message.

MessageBui | der . cr eat eMessage()
.t oSubj ect (" Conver sati onal Servi ce").signalling()
. Wi th("SoneFi el d", soneVal ue)

79

Chapter 21. Errai Bus

. noEr r or Handl i ng()
.repliesTo(new MessageCal | back() {
public void call back(Message message) {
Systemout.println("l received a response");

}
})

See the next section on how to build conversational services that can respond to such messages.

21.14.11. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it
would like the reply to go to. This is accomplished by utilizing the standard MessagePar t s. Repl yTo
message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBui | der . cr eat eMessage()
.t oSubj ect (" Obj ect Service").signalling()
.wi th(MessageParts. Repl yTo, "d ient Endpoint")
. noEr ror Handl i ng() . sendNowW t h(di spat cher);

And the conversational code on the server (for service ObjectService):

MessageBui | der . cr eat eConver sati on(message)
. subj ect Provi ded() . si gnal i ng()
.wWi th("Records", records)
.noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called
(bj ect Ser vi ce " and is referencing the incoming message that was sent in the former example,
the message created will automatically reference the Repl yTo subject that was provided by the
sender, and send the message back to the subject desired by the client on the client that sent
the message.

21.14.12. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves
nothing more than forgoing use of the reply API. For instance:

MessageBui | der . cr eat eMessage() .
.t oSubj ect (" MessagelLi st ener")
.Wth("Text", "Hello, fromyour overlords in the cloud")

80

Broadcasting

. noError Handl i ng() . sendd obal Wt h(di spatcher);

If sent from the server, all clients currently connected, who are listening to the subject
"Messageli st ener " will receive the message. It's as simple as that.

21.14.12.1. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs
on the server. Since a service advertised on the server is visible to all clients and all clients are
visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 21.14.13, “Message Routing Information”

21.14.12.2. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,
by design. This isn't to say that it's not possible. But one client cannot see a service within the
federation of another client. We institute this limitation as a matter of basic security. But many
software engineers will likely find the prospects of such communication appealing, so this section
will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs
on the server. Since a service advertised on the server is visible to all clients and all clients are
visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple
protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because
it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message
from one client and broadcasts it to the rest of the world, it may be less clear how to go about
routing from one particular client to another particular client, so we'll focus on that problem. This
is covered in Section 21.14.13, “Message Routing Information”

81

Chapter 21. Errai Bus

21.14.13. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain
session routing information. This information is used by the bus to determine what outbound
queues to use to deliver the message to, so they will reach their intended recipients. It is possible to
manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class or g. j boss. errai . bus. server. util. ServerBusUt i | s contains a utility method
for extracting the String-based SessionID which is used to identify the message queue associated
with any particular client. You may use this method to extract the Sessi onl D from a message so
that you may use it for routing. For example:

public void call back(Message nmessage) {
String sessionld = ServerBusUtil s. get Sessi onl d(message) ;

// Record this sessionld sonewhere.

The Sessi onl D can then be stored in a medium, say a Map, to cross-reference specific users or
whatever identifier you wish to allow one client to obtain a reference to the specific Sessi onl D of
another client. In which case, you can then provide the Sessi onl D as a MessagePart to indicate
to the bus where you want the message to go.

MessageBui | der . cr eat eMessage()
.toSubj ect ("C i ent MessagelLi stener")

.signal ling()
.wi th(MessageParts. Sessi onl D, sessionl d)
Wi th("Message", "We're relaying a nessage!")

. noErrorHandl i ng() . sendNowW t h(di spat cher);

By providing the Sessi onl D part in the message, the bus will see this and use it for routing the
message to the relevant queue.

Now you're routing from client-to-client!

It may be tempting however, to try and include destination Sessi onl D} }s at the client |evel,
assunming that this will nake the infrastructure sinpler. But this will not achieve
the desired results, as the bus treats {{SessionlD}}s as transient. Meaning, the
{{Sessi onl D information is not ever transmitted from bus-to-bus, and therefore is only directly
relevant to the proximate bus.

82

Handling Errors

21.15. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support
for handling errors is built directly into the MessageBui | der API, utilizing the Error Cal | back
interface. In the examples shown in previous exceptions, error-handing has been glossed over
with aubiquitous usage of the noEr r or Handl i ng() method while building messaging. We chose to
require the explicit use of such a method to remind developers of the fact that they are responsible
for their own error handling, requiring you to explicitty make the decision to forego handling
potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker
identification of problems with your applications if you have error handlers, and generally help you
build more robust code.

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWbr| dServi ce")
.signal l'ing()
.wth("nsg", "H there!")
.errorsHandl edBy(new ErrorCal | back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwabl e) {
t hrowabl e. pri nt StackTrace() ;
return true;
}

})
. sendNowW t h(di spat cher);

The addition of error-handling at first may put off developers as it makes code more verbose and
less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where
the same error-handler can appropriately be shared between multiple different calls.

Error Cal | back error = new ErrorCall back() {
publi ¢ bool ean error(Message nmessage, Throwabl e throwable) {
t hrowabl e. pri nt StackTrace();
return true;

MessageBui | der . cr eat eMessage()
.toSubj ect (" Hel | oWbr| dServi ce")
.signal ling()

.with("msg", "H therel")
.errorsHandl edBy(error)
. sendNowW t h(di spat cher);

83

Chapter 21. Errai Bus

A little nicer.

The error handler requires that return a bool ean value. This is to indicate whether or not Errai
should perform the defautl error handling actions it would normally take during a failure. You
will almost always want to return true here, unless you are trying to expicitly supress some
undesirably activity by Errai, such as automatic subject-termination in conversations. But this is
almost never the case.

21.16. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually
stream data to a remote client or group of clients (or from a client to the server). In cases
like this, you can utilize the repl yRepeating() , replyDel ayed() , sendRepeating() and
sendDel ayed() methods in the MessageBui | der .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate
method (either r epl yDel ayed() or sendDel ayed()).

MessageBui | der . creat eConver sati on(msQ)
.t oSubj ect (" FunSubj ect")
.signalling()
. noError Handl i ng()
.repl ybDel ayed(Ti meUni t. SECONDS, 5); // sends the nessage after 5 seconds.

or

MessageBui | der . cr eat eMessage()
.toSubj ect (" FunSubj ect")
.signal l'ing()
. noErr or Handl i ng()
. sendDel ayed(request Di spatcher, TinmeUnit.SECONDS, 5); // sends the nmessage
after 5 seconds.

21.17. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's {{repeatXXX()}}methods. The task will
repeat indefinitely until cancelled (see next section).

MessageBui | der . cr eat eMessage()
.t oSubj ect (" FunSubj ect")
.signal ling()
.wWi thProvided("time", new ResourceProvider<String>() {
Si npl eDat eFormat fnmt = new Si npl eDat eFor mat (" hh: nm ss");

84

Remote Procedure Calls (RPC)

public String get() {
return fnt.format(new Date(SystemcurrentTimeM I1lis());

}
. noError Handl i ng()

. sendRepeat i ngW t h(request Di spat cher, Ti neUnit.SECONDS, 1); //sends a nessage
every 1 second

The above example sends a message very 1 second with a message part called{{"time"}},
containing a formatted time string. Note the use of the{{withProvided()}} method; a provided
message part is calculated at the time of transmission as opposed to when the message is
constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the
cancel ()}}method of the {{AsyncTask instance which is returned when creating a task.
Reference to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBui |l der. creat eConver sati on(nessage)
.toSubj ect (" Ti neChannel ") . si gnal |l i ng()
. Wi thProvi ded(Ti neServerParts. Ti neStri ng, new ResourceProvi der<String>() {
public String get() {
return String.val ue (SystemcurrentTineMIIlis());

}
}) . defaul t ErrorHandl i ng().repl yRepeati ng(Ti meUnit. M LLI SECONDS, 100);

/1 cancel the task and interrupt it's thread if necessary.
t ask. cancel (true);

21.18. Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy
on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it
to be a more useful and concise approach to exposing services to the clients.

Please Note that this API has changed since version 1.0. RPC services provide a way of creating
type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support
client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service
class which implements it. See the following:

@Renvot e
public interface MyRenoteService {

85

Chapter 21. Errai Bus

publi ¢ bool ean i sEveryoneHappy();

The @renot e annotation tells Errai that we'd like to use this interface as a remote interface. The
remote interface must be part of of the GWT client code. It cannot be part of the server-side code,
since the interface will need to be referenced from both the client and server side code. That said,
the implementation of a service is relatively to the point:

@ber vi ce
public class MyRenot eServicel npl inplements M/RenoteService {

publ i ¢ bool ean i sEveryoneHappy() {
// blatently lie and say everyone's happy.
return true;

That's all there is to it. You use the same @ser vi ce annotation as described in Section 2.4. The
presence of the remote interface tips Errai off as to what you want to do with the class.

Making callsCalling a remote service involves use of the MessageBui | der API. Since all messages
are asynchronous, the actual code for calling the remote service involves the use of a callback,
which we use to receive the response from the remote method. Let's see how it works:

MessageBui | der. creat eCal | (new Renot eCal | back<Bool ean>() {
public void call back(Bool ean i sHappy) ({
if (isHappy) Wndow. al ert("Everyone is happy!");

}
}, MyRenot eService. cl ass) . i sEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correpond to the
return value of the method on the server. We also reference the remote interface we are calling,
and directly call the method. However, don't be tempted to write code like this :

bool ean bool = MessageBui | der.createCall (...,
MyRenot eSer vi ce. cl ass) . i sEver yoneHappy() ;

The above code will never return a valid result. In fact, it will always return null, false, or 0
depending on the type. This is due to the fact that the method is dispatched asynchronously, as
in, it does not wait for a server response before returning control. The reason we chose to do this,
as opposed to emulate the native GWT-approach, which requires the implementation of remote
and async interfaces, was purely a function of a tradeoff for simplicity.

86

Queue Sessions

21.19. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP
session management. While the queue sessions are tied to, and dependant on HTTP sessions for
the most part (meaning they die when HTTP sessions die), they provide extra layers of session
tracking to make dealing with complex applications built on Errai easier.

21.19.1. Scopes

One of the things Errai offers is the concept of session and local scopes.

21.19.1.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/1 obtain areference tothe |ocal context by referencing the i ncom ng nessage.
Local Cont ext injecti onContext = Local Context. get(nessage);

I/ set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

21.19.1.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenments MessageCal | back {
public void callback(final Message nessage) {
/1 obtain a reference to the session context by referencing the incom ng
message.
Sessi onCont ext i njectionContext = SessionContext.get(nmessage);

/] set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

87

Chapter 21. Errai Bus

21.19.2. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

21.19.3. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity
thresholds. Clients are required to send heartbeat messages every once in a while to maintain
their sessions with the server. If a heartbeat message is not received after a certain period of time,
the session is terminated and any resources are deallocated.

21.19.4. Scopes

One of the things Errai offers is the concept of session and local scopes.

21.19.4.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplenments MessageCal | back {
public void callback(final Message nessage) {
/1 obtain areference tothe | ocal context by referencing the i ncom ng message.
Local Cont ext injectionContext = Local Context. get(nessage);

/] set an attribute.
i njectionContext.setAttribute("M/Attribute”, "Foo");

21.19.4.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/1 obtain a reference to the session context by referencing the incom ng
nessage.
Sessi onCont ext i njectionContext = SessionContext.get(nmessage);

88

Serialization

/] set an attribute.
i njectionContext.setAttribute("MAttribute”, "Foo");

21.19.4.3. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store
parameters inside a local scope just like with a session by using the Local Cont ext helper class.

public class TestService inplements MessageCal | back {
public void callback(final Message nessage) {
/1 obtain areference tothe |l ocal context by referencing the i ncom ng nessage.
Local Cont ext injecti onContext = Local Context. get(nessage);

/1 set an attribute.
i njectionContext.setAttribute("M/Attribute", "Foo");

21.19.4.4. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is
used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService inplenents MessageCal | back {
public void callback(final Message nessage) {
/] obtain a reference to the session context by referencing the inconing
nessage.
Sessi onCont ext injectionContext = Sessi onCont ext.get (nmessage);

/1 set an attribute.
i njectionContext.setAttribute("MAttribute", "Foo");

21.20. Serialization

Serialization on the ErraiBus supports serialization within the same scope and limitations
as the default GWT RPC serialization rules. In order to expose your domain objects to

89

Chapter 21. Errai Bus

the bus so they can be exported across the bus, you must annotate them with the
org.j boss. errai.bus. server. annot ati ons. ExposeEnt ity annotation. The presence of this
annotation will cause Errai's GWT compiler extensions to generate marshall/demarshall stubs for
the annotated objects at compile-time.

For example:

@xposeEntity
public class User inplements java.io.Serializable {
private int userld,;

public int getUserld() {
return userld;

public void setUserld(int userld) {
this.userld = userld;

@ Note
All exposed entities must follow Java Bean convensions, and must be in the
classpath both at compile-time and at runtime. Compile-time access to the entities
is required since the creation of the marshalling/demarshalling proxies involves
code generation.

21.20.1. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if
the entities are located in a third-party library that you do not maintain. As such, you can explicitly
indicate in the configuration that you would like to have this entities made available by declaring
them in the Err ai App. properti es of any module.

errai.bus. serializabl eTypes=org. foo. Foo \
org. bar.Bar \
org. f oohi e. Foohi e

21.20.2. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if
the entities are located in a third-party library that you do not maintain. As such, you can explicitly

90

Wiring server side components

indicate in the configuration that you would like to have this entities made available by declaring
them in the Err ai App. properti es of any module.

errai.bus. serializabl eTypes=org. f 0oo. Foo \
org. bar.Bar \
org. f oobi e. Foobi e

21.21. Wiring server side components

By default, ErraiBus uses Google Guice to wire components. However, we plan on standardizing
on JSR-330 Dependency Injection specification in the near future. When deploying services on the
server-side, it is currently possible to obtain references to the MessageBus , Request Di spat cher
, the Errai ServiceConfigurator , and Errai Service by declaring them as injection
dependencies in Service classes, extension components, and session providers.

21.22. Bus Configuration

This section contains information on configuring the server-side bus.

21.22.1. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate
servletimplementation if you wish to use true, asynchronous I/0O. See _section 6.5 _ for information
on the available servlet implementations.

Here's a sample web.xml file:

<web-app xm ns="http://java. sun.coni xm / ns/javaee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://java. sun. coni xnm / ns/ j avaee
http://java. sun. conf xm / ns/j avaee/ web-app_2_5. xsd"
versi on="2.5">

<servl et >
<servl et - name>Err ai Servl et </ servl et - nane>
<servl et-class>org.j boss. errai.bus. server. servl et. Def aul t Bl ocki ngSer vl et </
servl et-cl ass>
<l oad-on-startup>1</| oad-on-start up>
</servlet>

<servl et - mappi ng>
<servl et - name>Errai Servl et </ servl et - name>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

91

Chapter 21. Errai Bus

<cont ext - par anp

<par am nane>errai . properti es</ par am nane>

<par am val ue>/ \EB- | NF/ err ai . properti es</ param val ue>
</ cont ext - par an>

<cont ext - par an>

<par am nanme>| ogi n. conf i g</ par am nane>

<par am val ue>/ \EEB- | NF/ | ogi n. confi g</ par am val ue>
</ cont ext - par an

<cont ext - par an>

<par am nane>users. properti es</ param nane>

<par am val ue>/ WVEB- | NF/ user s. properti es</ param val ue>
</ cont ext - par an®

</ web- app>

21.22.2. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

Hit

Request di spatcher inplenentation (default is SinpleD spatcher)

#i#

#errai . di spat cher_i npl ement ati on=or g. j boss. errai . bus. server. Si npl eDi spat cher
errai.di spatcher_i npl ement ati on=org. j boss. errai . bus. server. AsyncD spat cher

#

Worker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

##t

errai.async. t hread_pool _si ze=5

Hit

Worker tinmeout (in seconds). This defines the tinme that a single asychronous
process may run,

bef ore the worker pool

termnates it and reclains the thread. This option is only valid when using
the AsyncDi spatcher

i mpl ement ati on.

##t

errai.async. worker.timeout=5

92

ErraiService.properties

##t

Specify the Authentication/Authorization Adapter to use

##

#errai . aut henticati on_adapt er=org.jboss. errai.persistence.server.security.H bernateAuthenticati
#errai . aut henti cati on_adapter=org.jboss. errai.bus. server.security.auth. JAASAdapt er

##

This property indicates whether or not authentication is required for all
communi cation with the

bus. Set this

to "true' if all access to your application shoul d be secure.

Hit

#errai.require_authentication_for_all=true

21.22.2.1. errai.dispatcher.implementation

The errai.di spatcher _i npl enent ati on defines, as it's nhame quite succinctly implies, the
dispatcher implementation to be used by the bus. There are two implementations which come
with Errai out of the box: the Si npl eDi spat cher and the AsyncDi spat cher . See section on
Dispatchers for more information about the differences between the two.

21.22.2.2. errai.async_thread _pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering
messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

21.22.2.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming
message before the pool interrupts the thread and returns an error. Adjusting this value does not
have an effect if you are using the SimpleDispatcher.

21.22.2.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls
should be serviced based on authentication and security principles.

21.22.2.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests
inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any
user must be authenticated before the bus will deliver any messages from the client to any service.

21.22.2.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

93

Chapter 21. Errai Bus

21.22.2.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for
extensions.

21.22.3. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top
of any classpath, the subdirectories are scanned for deployable components. As such, all Errai
application modules in a project should contain an ErraiApp.properties at the root of all classpaths
that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)
that cannot be annotated for serialization. (See the section on serialization for more details)

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus. serializabl eTypes=org. f co. Foo \
org. bar. Bar \
or g. f oobi e. Foobi e

21.22.4. ErrailApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top
of any classpath, the subdirectories are scanned for deployable components. As such, all Errai
application modules in a project should contain an ErraiApp.properties at the root of all classpaths
that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)
that cannot be annotated for serialization. (See the section on serialization for more details)

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai . bus. serializabl eTypes=org. f 0o. Foo \
org. bar.Bar \
org. f oobi e. Foohi e

21.22.5. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

#H#

94

ErraiService.properties

Request dispatcher inplenmentation (default is SinpleD spatcher)

##t

#errai . di spat cher_i npl emrent ati on=or g. j boss. errai . bus. server. Si npl eDi spat cher
errai.di spatcher_i npl ement at i on=org. j boss. errai . bus. server. AsyncD spat cher

#

\Wrker pool size. This is the nunber of threads the asynchronous worker pool
shoul d provide for

processi ng

incom ng nmessages. This option is only valid when using the AsyncDi spatcher
i mpl enent ati on.

Hit

errai.async. t hread_pool _si ze=5

##

Worker timeout (in seconds). This defines the time that a single asychronous
process may run,

bef ore the worker pool

termnates it and reclains the thread. This option is only valid when using
t he AsyncDi spat cher

i mpl ement ati on.

##t

errai.async. worker. ti meout =5

##t

Specify the Authentication/Authorization Adapter to use

##

#errai . aut henticati on_adapt er=org.j boss. errai.persistence.server.security.H bernateAuthenticati
#errai . aut henti cati on_adapter=org.jboss. errai.bus. server.security.auth. JAASAdapt er

##

This property indicates whether or not authentication is required for all
communi cation with the

bus. Set this

to "true' if all access to your application shoul d be secure.

Ht

#errai.require_authentication_for_all=true

21.22.5.1. errai.dispatcher.implementation

The errai.di spatcher _i npl enent ati on defines, as it's name quite succinctly implies, the
dispatcher implementation to be used by the bus. There are two implementations which come
with Errai out of the box: the Si npl eDi spat cher and the AsyncDi spat cher . See section on
Dispatchers for more information about the differences between the two.

95

Chapter 21. Errai Bus

21.22.5.2. errai.async_thread_pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering
messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

21.22.5.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming
message before the pool interrupts the thread and returns an error. Adjusting this value does not
have an effect if you are using the SimpleDispatcher.

21.22.5.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls
should be serviced based on authentication and security principles.

21.22.5.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests
inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any
user must be authenticated before the bus will deliver any messages from the client to any service.

21.22.5.6. errai.auto_discover_services
A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.
21.22.5.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for
extensions.

21.22.5.8. errai.async_thread _pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering
messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

21.22.5.9. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming
message before the pool interrupts the thread and returns an error. Adjusting this value does not
have an effect if you are using the SimpleDispatcher.

21.22.5.10. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls
should be serviced based on authentication and security principles.

96

web.xml and appserver configuration

21.22.5.11. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

21.22.5.12. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for
extensions.

21.22.5.13. errai.dispatcher.implementation

The errai . di spatcher _i npl enent ati on defines, as it's nhame quite succinctly implies, the
dispatcher implementation to be used by the bus. There are two implementations which come
with Errai out of the box: the Si npl eDi spat cher and the AsyncDi spat cher . See section on
Dispatchers for more information about the differences between the two.

21.22.5.14. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests
inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any
user must be authenticated before the bus will deliver any messages from the client to any service.

21.22.6. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate
servletimplementation if you wish to use true, asynchronous I/0. See _section 6.5 _ for information
on the available servlet implementations.

Here's a sample web.xml file:

<web-app xm ns="http://java. sun.conl xm / ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://java. sun. comi xnm / ns/j avaee
http://java. sun. conl xm / ns/ j avaee/ web- app_2_5. xsd"
versi on="2.5">

<servl et >
<servl et - nane>Err ai Servl et </ servl et - name>
<servl et-class>org.j boss. errai.bus. server. servl et. Def aul t Bl ocki ngSer vl et </
servl et-cl ass>
<l oad-on-startup>1</| oad-on-start up>
</servlet>

<servl et - mappi ng>
<servl et - nane>Err ai Servl et </ servl et - name>
<url -pattern>*.errai Bus</url -pattern>

</ servl et - mappi ng>

<cont ext - par an»

97

Chapter 21. Errai Bus

<par am name>errai . properti es</ param name>
<par am val ue>/ VEB- | NF/ err ai . properti es</ param val ue>
</ cont ext - par an>

<cont ext - par anp

<par am nane>| ogi n. confi g</ par am nane>

<par am val ue>/ \EEB- | NF/ | ogi n. confi g</ par am val ue>
</ cont ext - par an>

<cont ext - par an>

<par am nanme>users. properti es</ param nanme>

<par am val ue>/ \EB- | NF/ user s. properti es</ param val ue>
</ cont ext - par an

</ web- app>

21.23. Dispatchers

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere
and seeing that they are delivered to where they need to go. There are two primary
implementations that are provided with Errai, depending on your needs.

21.23.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their
endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

21.23.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.
This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

21.23.3. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher
is used, HTTP threads will have control immediately returned upon dispatch of the message.
This dispatcher provides far more efficient use of resources in high-load applications, and will
significantly decrease memory and thread usage overall.

98

SimpleDispatcher

21.23.4. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.
Rather, when you configure the Errai to use this implementation, messages are delivered to their
endpoints synchronously. The incoming HTTP thread will be held open until the messages are
delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the
SimpleDispatcher can be far preferable when you're developing your application, as any errors
and stack traces will be far more easily traced and some cloud services may not permit the use
of threads in any case.

21.24. Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a
universally-compatible blocking implementation that provides fully synchronous communication
to/from the server-side bus. Where this introduces scalability problems, we have implemented
many webserver-specific implementations that take advantage of the various proprietary APIs to
provide true asynchrony.

These inlcuded implementations are packaged at: or g. j boss. errai . bus. server. servl et

21.24.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides
purely synchronous request handling and should work in virtually any servlet container, unless
there are restrictions on putting threads into sleep states.

21.24.2. TomcatCometServlet

The Tomcat AlO implementation of our servlet allows Errai to take advantage of Tomcat's event-
based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is
dependant on the Tomcat container being configured to support AlO using either it's NIO or APR
connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

21.24.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

21.24.4. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve
scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use
of this implementation requires use of the APR (Apache Portable Runtime).

99

Chapter 21. Errai Bus

21.24.5. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

21.24.6. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

21.24.7. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides
purely synchronous request handling and should work in virtually any servlet container, unless
there are restrictions on putting threads into sleep states.

21.24.8. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

21.24.9. JIBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve
scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use
of this implementation requires use of the APR (Apache Portable Runtime).

21.24.10. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless
pausing of port connections. This servlet implementation should work without any special
configuration of Jetty.

21.24.11. TomcatCometServlet

The Tomcat AlO implementation of our servlet allows Errai to take advantage of Tomcat's event-
based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is
dependant on the Tomcat container being configured to support AlO using either it's NIO or APR
connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

21.24.12. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

21.25. Debugging Errai Applications

Errai includes a bus monitoring application, which allows you to monitor all of the message
exchange activity on the bus in order to help track down any potential problems It allows you to
inspect individual messages to examine their state and structure.

100

Debugging Errai Applications

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your
application's dependencies. When you run your application in development mode, you will simply
need to add the following JVM options to your run configuration in order to launch the monitor: -
Derrai.tools. bus_nonitor_attach=true

Figure 21.3. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side
of the main screen lists the services that are currently available, and the right side is the service-
explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the
service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 21.4. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus
since the monitor became active. You do not need to actually have each specific monitor window
open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a
message part will bring up the object inspector, which will allow you to explore the state of any
objects contained within the message, not unlike the object inspectors provided by debuggers in
your favorite IDE. This can be a powerful tool for looking under the covers of your application.

101

102

Chapter 22.

Development Proxy

Proxied access to external containersUsually GWT developement happens in hosted mode and
then, later on, the GWT app is turned into a webapp (*.war) that can be deployed on a target
container (app server, servlet engine). This works quiet well for closed systems that don't depend
on additional resources the target container provides. A typical resource would be a DataSource
for access to a relational database.

Instead of pulling these resources into the hosted mode servlet engine (jetty, read-only JNDI) or
creating mock objects for any resources that cannot be run in hosted mode, we offer you a much
more simple way to work with external resources: Simply proxy all requests that occur in hosted
mode to an external target container:

Figure 22.1. Development Proxy

The proxy is implemented a yet another servlet that you need to add to the web.xml that's being
sed in hosted mode:

<servlet>
<servl et - nane>err ai Proxy</ servl et - name>
<descri pti on>Errai Proxy</description>
<servl et-cl ass>org.j boss. errai.tools. proxy. Xm H t pProxyServl et </
servl et-cl ass>
<i nit-paranp
<par am nanme>confi g. name</ par am nane>
<par am val ue>err ai - proxy. j son</ param val ue> (1)
</init-paranp
<l oad- on- startup>1</| oad- on- st art up>
</servlet>

<servl et - mappi ng>

<servl et - nane>err ai Proxy</ servl et - name>
<url - pattern>/app/ proxy/*</url -pattern> (2)
</ servl et - mappi ng>

1. Proxy configuration. See details below.
2. The proxy url pattern convetion. The bus bootstraps on this URL.

The web.xml proxy declaration contains two notable elements: A reference to the proxy
configuration file and a URL pattern, where the proxy can found. While the later shouldn't be
changed (the bus bootstraps on this URL), you need to change the proxy config according to your
needs:

103

Chapter 22. Development Proxy

{"xhp": {
"version": "1.1",
"services": [
{"id": "default",
"url":"http://127.0.0.1: 8080/ my- gw - app/ i n. errai Bus",
"passt hrough":true

}
]
}
}

You would need to _change the host, port and webcontext _ (‘my-gwt-app' in this case) to reflect
the location of the external container. 'passthrough' simply means that any request to 'proxy/
in.erraiBus' will go to ‘container/my-gwt-app/in.erraiBus'. This already indicates that you need to
have the server side part of your GWT application, already running on the target container. The
most simple way to achieve this, is to build a the complete webapp, deploy it and ignore the Ul
parts that may be available on the server.

104

Chapter 23.

Erral IOC

The Errai IOC (Inversion-of-Control) module is a central feature of the Errai Framework, providing
client-side service location, component lifecycle, and injection services. The framework is a
modular and extensible system for building reusable client-side components.

23.1. Dependency Injection

The core Errai IOC module implements a subset of the JSR-330 Dependency Injection [http://
download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for
in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the
implementation of decoupled and type-safe components. By using DI, components do not need
to be aware of the implementation of provided services. Instead, they merely declare a contract
with the container, which in turn provides instances of the services that component depends on.

A simple example:

public class M/Littl ed ass {
private final TinmeService tineService;

@ nj ect
public MyLittl eCd ass(Ti meService tineService) ({
this.tinmeService = tinmeServi ce;

public void printTinme() {
Systemout.println(this.timeService.getTine());

In this example, we create a simple class which declares a dependency using
@nject [http://downl oad. oracl e.com j avaee/ 6/ api/javax/inject/Inject.htnm] for
the interface Ti neSer vi ce . In this particular case, we use constructor injection to establish the
contract between the container and the component. We can similarly use field injection to the
same effect:

public class M/Littl ed ass {
@ nj ect
private TinmeService tineService;

public void printTime() {
Systemout.println(this.timeService.getTine());

105

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 23. Errai IOC

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot
create immutable classes using the pattern, since the container must first call the
default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential — albeit remote — that the object could be left in an partially or
improperly initialized state. The advantage of constructor injection is that fields can
be immutable (final), and invariance rules applied at construction time, leading to
earlier failures, and the guarantee of consistent state.

@nject [http://downl oad. oracl e. com j avaee/ 6/ api /javax/inject/Inject.htm]

23.2. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide
a programmatic way of creating and configuring injectors. Instead, container-level binding rules are
defined by implementing a Provi der [http://downl oad. oracl e. cont j avaee/ 6/ api / j avax/
inject/Provider.htm] ,which is scanned for an auto-discovered by the container.

23.2.1. level Providers

A Provider is essentially a factory which produces dependent types in the container, which
defers instantiation responsibility for the provided type to the provider implementation. Top-level
providers use the standard j avax. i nj ect . Provi der <T> interface.

Types made available as top-level providers will be available for injection in any managed
component within the container.

Out of the box, Errai IOC implements three default top-level providers:

e org.jboss.errai.ioc.client.api.builtin. MessageBusProvider : Makes an instance of
MessageBus available for injection.

e org.jboss.errai.ioc.client.api.builtin.RequestDi spatchProvi der : Makes an
instance of the Request Di spat cher available for injection.

e org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event
Consuner <?> objects available for injection.

Implementing a Provi der is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface TinmeService {

106

http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Container Wiring

public String getTime();

TimeServiceProvider.java

@ COCPr ovi der
@i ngl et on
public class TinmeServiceProvider inplements Provider<Ti meService> {

@verride

public TinmeService get() {

return new Ti neService() {
public String getTime() {
return "It's mdnight sonewhere!";

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Qui ce. creat el nj ect or (new Abstract Modul e() {
public void configure() {
bi nd(Ti meServi ce. cl ass).toProvi der (Ti meServi ceProvi der. cl ass);

}
}) . getl nstance(MyApp. cl ass);

As shown in the above example code, the annotation @ OCPr ovi der is used to denote top-level
providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject
dependencies — particularly from other top-level providers — as necessary.

23.3. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide
a programmatic way of creating and configuring injectors. Instead, container-level binding rules are
defined by implementing a Provi der [http://downl oad. oracl e. cont j avaee/ 6/ api / j avax/
inject/Provider.htm] ,which is scanned for an auto-discovered by the container.

107

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Chapter 23. Errai IOC

23.3.1. level Providers

A Provider is essentially a factory which produces dependent types in the container, which
defers instantiation responsibility for the provided type to the provider implementation. Top-level
providers use the standard j avax. i nj ect . Provi der <T> interface.

Types made available as top-level providers will be available for injection in any managed
component within the container.

Out of the box, Errai IOC implements three default top-level providers:

e org.jboss.errai.ioc.client.api.builtin. MessageBusProvider : Makes an instance of
MessageBus available for injection.

e org.jboss.errai.ioc.client.api.builtin.RequestD spatchProvider . Makes an
instance of the Request Di spat cher available for injection.

* org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event
Consumer <?> objects available for injection.

Implementing a Provi der is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface Ti meService {
public String getTinme();

TimeServiceProvider.java

@ OCPr ovi der
@i ngl et on
public class TinmeServiceProvider inplements Provider<Ti meService> {

@verride

public TinmeService get() {

return new Ti neService() {
public String getTime() {
return "It's mdnight sonewhere!";

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

108

level Providers

Gui ce. creat el nj ect or (new Abstract Mbdul e() {
public void configure() {
bi nd(Ti meServi ce. cl ass).toProvi der (Ti meServi ceProvi der. cl ass);

}
}) . get I nst ance(MyApp. cl ass);

As shown in the above example code, the annotation @ OCPr ovi der is used to denote top-level
providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject
dependencies — particularly from other top-level providers — as necessary.

23.3.2. level Providers

A Provider is essentially a factory which produces dependent types in the container, which
defers instantiation responsibility for the provided type to the provider implementation. Top-level
providers use the standard j avax. i nj ect . Provi der <T> interface.

Types made available as top-level providers will be available for injection in any managed
component within the container.

Out of the box, Errai IOC implements three default top-level providers:

e org.jboss.errai.ioc.client.api.builtin. MessageBusProvider : Makes an instance of
MessageBus available for injection.

e org.jboss.errai.ioc.client.api.builtin.RequestD spatchProvider . Makes an
instance of the Request Di spat cher available for injection.

e org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event
Consuner <?> objects available for injection.

Implementing a Pr ovi der is relatively straight-forward. Consider the following two classes:
TimeService.java

public interface TimeService {
public String getTime();

109

Chapter 23. Errai IOC

TimeServiceProvider.java

@ OCPr ovi der
@i ngl et on
public class Ti neServiceProvider inplenments Provider<Ti meService> {

@verride

public TinmeService get() {

return new Ti neService() {
public String getTinme() {
return "It's mdnight sonewhere!";

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Cui ce. creat el nj ect or (new Abstract Modul e() {
public void configure() {
bi nd(Ti meServi ce. cl ass).toProvi der (Ti meServi ceProvi der. cl ass);

}
}) . getl nstance(MyApp. cl ass);

As shown in the above example code, the annotation @ OCPr ovi der is used to denote top-level
providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject
dependencies — particularly from other top-level providers — as necessary.

23.4. Dependency Injection

The core Errai IOC module implements a subset of the JSR-330 Dependency Injection [http://
download.oracle.com/otndocs/jcp/dependency _injection-1.0-final-oth-JSpec/] specification for
in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the
implementation of decoupled and type-safe components. By using DI, components do not need
to be aware of the implementation of provided services. Instead, they merely declare a contract
with the container, which in turn provides instances of the services that component depends on.

110

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/

Dependency Injection

A simple example:

public class M/Littl ed ass {
private final TimeService tineService;

@ nj ect
public MyLittleCd ass(Ti meService tineService) {
this.timeService = tineService;

public void printTinme() {
Systemout.println(this.tineService.getTine());

In this example, we create a simple class which declares a dependency using
@nject [http://downl oad. oracl e.com javaee/ 6/ api/javax/inject/Inject.htm] for
the interface Ti meSer vi ce . In this particular case, we use constructor injection to establish the
contract between the container and the component. We can similarly use field injection to the
same effect:

public class MyLittl ed ass {
@ nj ect
private TinmeService tineService;

public void printTinme() {
Systemout.println(this.timeService.getTine());

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot
create immutable classes using the pattern, since the container must first call the
default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential — albeit remote — that the object could be left in an partially or
improperly initialized state. The advantage of constructor injection is that fields can
be immutable (final), and invariance rules applied at construction time, leading to
earlier failures, and the guarantee of consistent state.

@nject [http://downl oad. oracl e.com j avaee/ 6/ api/javax/inject/Inject.htm]

111

http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

112

Chapter 24.

Reporting problems

If you run into trouble don't hesitate to get in touch with us:

JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

e User Forum: http://community.jboss.org/en/errai?view=discussions

Mailing List: http://jposs.org/errai/MailingLists.html

IRC: irc:/lirc.freenode.net/errai

113

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

114

Appendix A. Revision History

Revision History
Revision ToDo 0-0 ToDo Wed Jan 19 2011 ToDo DudeToDo

McPants<ToDo Dude. McPant s@xanpl e. con»
ToDo Initial creation of book

115

116

	Reference Guide
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. Introduction
	1.1. What is it?
	1.2. Installation
	1.2.1. Required software

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. MessageBuilder API
	2.3. Single-Response Conversations & Psuedo-Synchronous Messaging
	2.4. Sender Inferred Subjects
	2.5. Broadcasting
	2.6. Client-to-Client Communication
	2.7. Message Routing Information

	Chapter 3. Handling Errors
	Chapter 4. Asynchronous Message Tasks
	Chapter 5. Repeating Tasks
	Chapter 6. Remote Procedure Calls (RPC)
	Chapter 7. Queue Sessions
	7.1. Scopes
	7.1.1. Local Scope
	7.1.2. Session Scopes

	7.2. Lifecycle

	Chapter 8. Serialization
	8.1. Serialization of external types

	Chapter 9. Wiring server side components
	Chapter 10. Bus Configuration
	10.1. web.xml and appserver configuration
	10.2. ErraiService.properties
	10.2.1. errai.dispatcher.implementation
	10.2.2. errai.async_thread_pool_size
	10.2.3. errai.async.worker_timeout
	10.2.4. errai.authentication_adapter
	10.2.5. errai.require_authentication_for_all
	10.2.6. errai.auto_discover_services
	10.2.7. errai.auto_load_extensions

	10.3. ErraiApp.properties

	Chapter 11. Dispatchers
	11.1. SimpleDispatcher
	11.2. AsyncDispatcher

	Chapter 12. Servlet Implementations
	12.1. DefaultBlockingServlet
	12.2. TomcatCometServlet
	12.3. JettyContinuationsServlet
	12.4. JBossCometServlet
	12.5. GrizzlyCometServlet
	12.6. WeblogicAsyncServlet

	Chapter 13. Debugging Errai Applications
	Chapter 14. Downloads
	Chapter 15. Sources
	Chapter 16. License and EULA
	Chapter 17. Introduction
	17.1. What is it
	17.2. Installation
	17.2.1. Required software

	Chapter 18. License and EULA
	Chapter 19. Downloads
	Chapter 20. Sources
	Chapter 21. Errai Bus
	21.1. Messaging
	21.1.1. Messaging Overview
	21.1.2. MessageBuilder API
	21.1.3. Single-Response Conversations & Psuedo-Synchronous Messaging
	21.1.4. Sender Inferred Subjects
	21.1.5. Broadcasting
	21.1.6. Client-to-Client Communication
	21.1.7. Message Routing Information

	21.2. Handling Errors
	21.3. Asynchronous Message Tasks
	21.4. Repeating Tasks
	21.5. Remote Procedure Calls (RPC)
	21.6. Queue Sessions
	21.6.1. Scopes
	21.6.1.1. Local Scope
	21.6.1.2. Session Scopes

	21.6.2. Lifecycle

	21.7. Serialization
	21.7.1. Serialization of external types

	21.8. Wiring server side components
	21.9. Bus Configuration
	21.9.1. web.xml and appserver configuration
	21.9.2. ErraiService.properties
	21.9.2.1. errai.dispatcher.implementation
	21.9.2.2. errai.async_thread_pool_size
	21.9.2.3. errai.async.worker_timeout
	21.9.2.4. errai.authentication_adapter
	21.9.2.5. errai.require_authentication_for_all
	21.9.2.6. errai.auto_discover_services
	21.9.2.7. errai.auto_load_extensions

	21.9.3. ErraiApp.properties

	21.10. Dispatchers
	21.10.1. SimpleDispatcher
	21.10.2. AsyncDispatcher

	21.11. Servlet Implementations
	21.11.1. DefaultBlockingServlet
	21.11.2. TomcatCometServlet
	21.11.3. JettyContinuationsServlet
	21.11.4. JBossCometServlet
	21.11.5. GrizzlyCometServlet
	21.11.6. WeblogicAsyncServlet

	21.12. Debugging Errai Applications
	21.13. What is Errai Bus?
	21.14. Messaging
	21.14.1. Messaging Overview
	21.14.2. MessageBuilder API
	21.14.3. Single-Response Conversations & Psuedo-Synchronous Messaging
	21.14.4. Sender Inferred Subjects
	21.14.5. Broadcasting
	21.14.6. Client-to-Client Communication
	21.14.7. Message Routing Information
	21.14.8. Messaging Overview
	21.14.9. MessageBuilder API
	21.14.10. Single-Response Conversations & Psuedo-Synchronous Messaging
	21.14.11. Sender Inferred Subjects
	21.14.12. Broadcasting
	21.14.12.1. Client-to-Client Communication
	21.14.12.2. Client-to-Client Communication

	21.14.13. Message Routing Information

	21.15. Handling Errors
	21.16. Asynchronous Message Tasks
	21.17. Repeating Tasks
	21.18. Remote Procedure Calls (RPC)
	21.19. Queue Sessions
	21.19.1. Scopes
	21.19.1.1. Local Scope
	21.19.1.2. Session Scopes

	21.19.2. Lifecycle
	21.19.3. Lifecycle
	21.19.4. Scopes
	21.19.4.1. Local Scope
	21.19.4.2. Session Scopes
	21.19.4.3. Local Scope
	21.19.4.4. Session Scope

	21.20. Serialization
	21.20.1. Serialization of external types
	21.20.2. Serialization of external types

	21.21. Wiring server side components
	21.22. Bus Configuration
	21.22.1. web.xml and appserver configuration
	21.22.2. ErraiService.properties
	21.22.2.1. errai.dispatcher.implementation
	21.22.2.2. errai.async_thread_pool_size
	21.22.2.3. errai.async.worker_timeout
	21.22.2.4. errai.authentication_adapter
	21.22.2.5. errai.require_authentication_for_all
	21.22.2.6. errai.auto_discover_services
	21.22.2.7. errai.auto_load_extensions

	21.22.3. ErraiApp.properties
	21.22.4. ErraiApp.properties
	21.22.5. ErraiService.properties
	21.22.5.1. errai.dispatcher.implementation
	21.22.5.2. errai.async_thread_pool_size
	21.22.5.3. errai.async.worker_timeout
	21.22.5.4. errai.authentication_adapter
	21.22.5.5. errai.require_authentication_for_all
	21.22.5.6. errai.auto_discover_services
	21.22.5.7. errai.auto_load_extensions
	21.22.5.8. errai.async_thread_pool_size
	21.22.5.9. errai.async.worker_timeout
	21.22.5.10. errai.authentication_adapter
	21.22.5.11. errai.auto_discover_services
	21.22.5.12. errai.auto_load_extensions
	21.22.5.13. errai.dispatcher.implementation
	21.22.5.14. errai.require_authentication_for_all

	21.22.6. web.xml and appserver configuration

	21.23. Dispatchers
	21.23.1. SimpleDispatcher
	21.23.2. AsyncDispatcher
	21.23.3. AsyncDispatcher
	21.23.4. SimpleDispatcher

	21.24. Servlet Implementations
	21.24.1. DefaultBlockingServlet
	21.24.2. TomcatCometServlet
	21.24.3. JettyContinuationsServlet
	21.24.4. JBossCometServlet
	21.24.5. GrizzlyCometServlet
	21.24.6. WeblogicAsyncServlet
	21.24.7. DefaultBlockingServlet
	21.24.8. GrizzlyCometServlet
	21.24.9. JBossCometServlet
	21.24.10. JettyContinuationsServlet
	21.24.11. TomcatCometServlet
	21.24.12. WeblogicAsyncServlet

	21.25. Debugging Errai Applications

	Chapter 22. Development Proxy
	Chapter 23. Errai IOC
	23.1. Dependency Injection
	23.2. Container Wiring
	23.2.1. level Providers

	23.3. Container Wiring
	23.3.1. level Providers
	23.3.2. level Providers

	23.4. Dependency Injection

	Chapter 24. Reporting problems
	Appendix A. Revision History

