
Reference Guide

Errai Framework 1.3

by ToDo Dude ToDo Somewhere ToDo McPants

iii

Preface .. vii

1. Document Conventions ... vii

2. Feedback ... vii

1. Introduction ... 1

1.1. What is it? .. 1

1.2. Installation .. 1

1.2.1. Required software .. 1

2. Messaging ... 3

2.1. Messaging Overview ... 3

2.2. MessageBuilder API .. 3

2.3. Single-Response Conversations & Psuedo-Synchronous Messaging 7

2.4. Sender Inferred Subjects ... 7

2.5. Broadcasting .. 8

2.6. Client-to-Client Communication .. 8

2.7. Message Routing Information .. 9

3. Handling Errors ... 11

4. Asynchronous Message Tasks .. 13

5. Repeating Tasks .. 15

6. Remote Procedure Calls (RPC) .. 17

7. Queue Sessions ... 19

7.1. Scopes ... 19

7.1.1. Local Scope ... 19

7.1.2. Session Scopes ... 19

7.2. Lifecycle ... 20

8. Serialization ... 21

8.1. Serialization of external types .. 21

9. Wiring server side components ... 23

10. Bus Configuration .. 25

10.1. web.xml and appserver configuration ... 25

10.2. ErraiService.properties ... 26

10.2.1. errai.dispatcher.implementation ... 27

10.2.2. errai.async_thread_pool_size .. 27

10.2.3. errai.async.worker_timeout .. 27

10.2.4. errai.authentication_adapter .. 27

10.2.5. errai.require_authentication_for_all .. 27

10.2.6. errai.auto_discover_services ... 27

10.2.7. errai.auto_load_extensions .. 27

10.3. ErraiApp.properties .. 27

11. Dispatchers .. 29

11.1. SimpleDispatcher .. 29

11.2. AsyncDispatcher ... 29

12. Servlet Implementations .. 31

12.1. DefaultBlockingServlet ... 31

12.2. TomcatCometServlet ... 31

Reference Guide

iv

12.3. JettyContinuationsServlet ... 31

12.4. JBossCometServlet ... 31

12.5. GrizzlyCometServlet .. 31

12.6. WeblogicAsyncServlet ... 31

13. Debugging Errai Applications .. 33

14. Downloads ... 35

15. Sources .. 37

16. License and EULA ... 39

17. Introduction .. 41

17.1. What is it .. 41

17.2. Installation .. 41

17.2.1. Required software .. 41

18. License and EULA ... 43

19. Downloads ... 45

20. Sources .. 47

21. Errai Bus .. 49

21.1. Messaging .. 49

21.1.1. Messaging Overview .. 49

21.1.2. MessageBuilder API ... 49

21.1.3. Single-Response Conversations & Psuedo-Synchronous Messaging 53

21.1.4. Sender Inferred Subjects .. 53

21.1.5. Broadcasting .. 54

21.1.6. Client-to-Client Communication ... 54

21.1.7. Message Routing Information .. 55

21.2. Handling Errors ... 56

21.3. Asynchronous Message Tasks ... 57

21.4. Repeating Tasks ... 58

21.5. Remote Procedure Calls (RPC) ... 59

21.6. Queue Sessions .. 60

21.6.1. Scopes .. 60

21.6.2. Lifecycle .. 61

21.7. Serialization .. 61

21.7.1. Serialization of external types .. 62

21.8. Wiring server side components .. 62

21.9. Bus Configuration ... 62

21.9.1. web.xml and appserver configuration ... 62

21.9.2. ErraiService.properties .. 63

21.9.3. ErraiApp.properties ... 65

21.10. Dispatchers ... 65

21.10.1. SimpleDispatcher .. 66

21.10.2. AsyncDispatcher ... 66

21.11. Servlet Implementations ... 66

21.11.1. DefaultBlockingServlet .. 66

21.11.2. TomcatCometServlet ... 66

v

21.11.3. JettyContinuationsServlet .. 66

21.11.4. JBossCometServlet ... 67

21.11.5. GrizzlyCometServlet ... 67

21.11.6. WeblogicAsyncServlet ... 67

21.12. Debugging Errai Applications ... 67

21.13. What is Errai Bus? .. 68

21.14. Messaging .. 68

21.14.1. Messaging Overview ... 68

21.14.2. MessageBuilder API ... 68

21.14.3. Single-Response Conversations & Psuedo-Synchronous Messaging 72

21.14.4. Sender Inferred Subjects ... 73

21.14.5. Broadcasting .. 73

21.14.6. Client-to-Client Communication .. 74

21.14.7. Message Routing Information .. 74

21.14.8. Messaging Overview ... 75

21.14.9. MessageBuilder API ... 75

21.14.10. Single-Response Conversations & Psuedo-Synchronous Messaging 79

21.14.11. Sender Inferred Subjects ... 80

21.14.12. Broadcasting .. 80

21.14.13. Message Routing Information .. 82

21.15. Handling Errors ... 83

21.16. Asynchronous Message Tasks ... 84

21.17. Repeating Tasks ... 84

21.18. Remote Procedure Calls (RPC) ... 85

21.19. Queue Sessions .. 87

21.19.1. Scopes .. 87

21.19.2. Lifecycle ... 88

21.19.3. Lifecycle ... 88

21.19.4. Scopes .. 88

21.20. Serialization .. 89

21.20.1. Serialization of external types .. 90

21.20.2. Serialization of external types .. 90

21.21. Wiring server side components .. 91

21.22. Bus Configuration .. 91

21.22.1. web.xml and appserver configuration ... 91

21.22.2. ErraiService.properties .. 92

21.22.3. ErraiApp.properties ... 94

21.22.4. ErraiApp.properties ... 94

21.22.5. ErraiService.properties .. 94

21.22.6. web.xml and appserver configuration ... 97

21.23. Dispatchers ... 98

21.23.1. SimpleDispatcher .. 98

21.23.2. AsyncDispatcher ... 98

21.23.3. AsyncDispatcher ... 98

Reference Guide

vi

21.23.4. SimpleDispatcher .. 99

21.24. Servlet Implementations ... 99

21.24.1. DefaultBlockingServlet .. 99

21.24.2. TomcatCometServlet ... 99

21.24.3. JettyContinuationsServlet .. 99

21.24.4. JBossCometServlet ... 99

21.24.5. GrizzlyCometServlet .. 100

21.24.6. WeblogicAsyncServlet ... 100

21.24.7. DefaultBlockingServlet .. 100

21.24.8. GrizzlyCometServlet .. 100

21.24.9. JBossCometServlet ... 100

21.24.10. JettyContinuationsServlet .. 100

21.24.11. TomcatCometServlet ... 100

21.24.12. WeblogicAsyncServlet ... 100

21.25. Debugging Errai Applications ... 100

22. Development Proxy .. 103

23. Errai IOC .. 105

23.1. Dependency Injection .. 105

23.2. Container Wiring ... 106

23.2.1. level Providers .. 106

23.3. Container Wiring ... 107

23.3.1. level Providers .. 108

23.3.2. level Providers .. 109

23.4. Dependency Injection .. 110

24. Reporting problems ... 113

A. Revision History .. 115

vii

Preface

1. Document Conventions

2. Feedback

viii

Chapter 1.

1

Introduction

1.1. What is it?

Errai is a GWT-based framework for building rich web applications using next-generation web

technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC

infrastructure with true, uniform, asynchronous messaging across the client and server.

1.2. Installation

1.2.1. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the

examples, and for leveraging the quickstart utilities.

• JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

• Apache Maven: http://maven.apache.org/download.html

Launching maven the first time

Please note, that when launching maven the first time on your machine, it will

fetch all dependencies from a central repository. This may take a while, because it

includes downloading large binaries like GWT SDK. However, subsequent builds

are not required to go through this step and will be much faster.

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

2

Chapter 2.

3

Messaging
This section covers the core messaging concepts of the ErraiBus messaging framework.

2.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints

are given string-based names that are referenced by message senders. There is no difference

between sending a message to a client-based service, or sending a message to a server-based

service. In fact, a service of the same name may co-exist on both the client and the server and

both will receive all messages bound for that service name, whether they are sent from the client

or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your

application to provide a message-based infrastructure for your web application. It can be tempting

to think of ErraiBus simply as a client-server communication platform, but there is a plethora of

possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and

expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into

having the capabilities it now has today. So keep that in mind when you run up against problems

in the client space that could benefit from runtime federation.

2.2. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder

API, that is used for constructing messages. All three major message patterns can be constructed

from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCallback interface.

But before we dive into the details, let look at some use cases first.

Sending Messages with the Client BusIn order to send a message from a client you need to create

a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we

send it to the subject 'HelloWorldService'.

public class HelloWorld implements EntryPoint {

// Get an instance of the RequestDispatcher

 private RequestDispatcher dispatcher = ErraiBus.getDispatcher();

 public void onModuleLoad() {

 Button button = new Button("Send message");

 button.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

Chapter 2. Messaging

4

 // Send a message to the 'HelloWorldService'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService") // (1)

 .signalling() // (2)

 .noErrorHandling() // (3)

 .sendNowWith(dispatcher); // (4)

 });

 [...]

 }

 }

}

In the above example we build and send a message every time the button is clicked. Here's an

explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldService ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

4. We transmit the message by providing an instance to the RequestDispatcher

Note

An astute observer will note that access to the RequestDispatcher differs

within client code and server code. Because the client code does not run within

a container, access to the RequestDispatcher and MessageBus is statically

accessed using the ErraiBus.get() and ErraiBus.getDispatcher() methods.

The server-side code, conversely, runs inside a dependency container for

managing components. It currently uses Guice as the default container, but will

more generically support the JSR-330 specification in the future.

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at

least one receiver. A receiver is as it sounds--it receives the message and does something with it.

Implementing a receiver (also referred to as a service) is as simple as implementing our standard

MessageCallback interface, which is used pervasively across, both client and server code. Let's

begin with server side component that receives messages:

@Service

 public class HelloWorldService implements MessageCallback {

 public void callback(Message message) {

MessageBuilder API

5

 System.out.println("Hello, World!");

 }

 }

He we declare an extremely simple service. The @Service annotation provides a convenient,

meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server BusIn the following example we extend our server side

component to reply with a message when the callback method is invoked. It will create a message

and address it to the subject ' HelloWorldClient ':

@Service

public class HelloWorldService implements MessageCallback {

 private RequestDispatcher dispatcher;

 @Inject

 public HelloWorldService(RequestDispatcher disaptcher) {

 dispatcher = dispatcher;

 }

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldClient") // (1)

 .signalling() // (2)

 .with("text", "Hi There") // (3)

 .noErrorHandling() // (4)

 .sendNowWith(dispatcher); // (5)

 });

 }

}

The above example shows a service which sends a message in response to receiving a message.

Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldClient ". We

are sending this message to all clients which are listening in on this subject. For information on

how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

Chapter 2. Messaging

6

5. We transmit the message by providing an instance of the RequestDispatcher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously

and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open

COMET channel at all times, these messages are delivered in real time to the client as they are

sent. This provides built-in push messaging for all client services.

public class HelloWorld implements EntryPoint {

 private MessageBus bus = ErraiBus.get();

 public void onModuleLoad() {

 [...]

 /**

 * Declare a local service to receive messages on the subject

 * "BroadcastReceiver".

 */

 bus.subscribe("BroadcastReceiver", new MessageCallback() {

 public void callback(CommandMessage message) {

 /**

 * When a message arrives, extract the "text" field and

 * do something with it

 */

 String messageText = message.get(String.class, "text");

 }

 });

 [...]

 }

}

In the above example, we declare a new client service called "BroadcastReceiver" which can

now accept both local messages and remote messages from the server bus. The service will be

available in the client to receive messages as long the client bus is and the service is not explicitly

de-registered.

ConversationsConversations are message exchanges which are between a single client and a

service. They are a fundmentally important concept in ErraiBus, since by default, a message will

be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

@Service

public class HelloWorldService implements MessageCallback {

Single-Response Conversations & Psuedo-Synchronous Messaging

7

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient' on the client that sent us the

 // the message.

 MessageBuilder.createConversation(message)

 .toSubject("HelloWorldClient")

 .signalling()

 .with("text", "Hi There! We're having a reply!")

 .noErrorHandling().reply();

 });

 }

}

Note that the only difference between the example in the previous section (2.4) and this is the use

of the createConversation()}}method with {{MessageBuilder .

2.3. Single-Response Conversations & Psuedo-

Synchronous Messaging

It is possible to contruct a message and a default response handler as part of the MessageBuilder

API. It should be noted, that multiple replies will not be possible and will result an exception

if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous

conversive things.

You can do this by specifying a MessageCallback using the repliesTo() method in the

MessageBuilder API after specifying the error handling of the message.

MessageBuilder.createMessage()

 .toSubject("ConversationalService").signalling()

 .with("SomeField", someValue)

 .noErrorHandling()

 .repliesTo(new MessageCallback() {

 public void callback(Message message) {

 System.out.println("I received a response");

 }

 })

See the next section on how to build conversational services that can respond to such messages.

2.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it

would like the reply to go to. This is accomplished by utilizing the standard MessageParts.ReplyTo

message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

Chapter 2. Messaging

8

MessageBuilder.createMessage()

 .toSubject("ObjectService").signalling()

 .with(MessageParts.ReplyTo, "ClientEndpoint")

 .noErrorHandling().sendNowWith(dispatcher);

And the conversational code on the server (for service ObjectService):

MessageBuilder.createConversation(message)

 .subjectProvided().signalling()

 .with("Records", records)

 .noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called "

ObjectService " and is referencing the incoming message that was sent in the former example,

the message created will automatically reference the ReplyTo subject that was provided by the

sender, and send the message back to the subject desired by the client on the client that sent

the message.

2.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves

nothing more than forgoing use of the reply API. For instance:

MessageBuilder.createMessage().

 .toSubject("MessageListener")

 .with("Text", "Hello, from your overlords in the cloud")

 .noErrorHandling().sendGlobalWith(dispatcher);

If sent from the server, all clients currently connected, who are listening to the subject

"MessageListener" will receive the message. It's as simple as that.

2.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs

on the server. Since a service advertised on the server is visible to all clients and all clients are

visible to the server, you might already see where we're going with this.

Message Routing Information

9

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 21.14.13, “Message Routing Information”

2.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain

session routing information. This information is used by the bus to determine what outbound

queues to use to deliver the message to, so they will reach their intended recipients. It is possible to

manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class org.jboss.errai.bus.server.util.ServerBusUtils contains a utility method

for extracting the String-based SessionID which is used to identify the message queue associated

with any particular client. You may use this method to extract the SessionID from a message so

that you may use it for routing. For example:

...

 public void callback(Message message) {

 String sessionId = ServerBusUtils.getSessionId(message);

 // Record this sessionId somewhere.

 ...

 }

The SessionID can then be stored in a medium, say a Map, to cross-reference specific users or

whatever identifier you wish to allow one client to obtain a reference to the specific SessionID of

another client. In which case, you can then provide the SessionID as a MessagePart to indicate

to the bus where you want the message to go.

MessageBuilder.createMessage()

 .toSubject("ClientMessageListener")

 .signalling()

 .with(MessageParts.SessionID, sessionId)

 .with("Message", "We're relaying a message!")

 .noErrorHandling().sendNowWith(dispatcher);

By providing the SessionID part in the message, the bus will see this and use it for routing the

message to the relevant queue.

Now you're routing from client-to-client!

Chapter 2. Messaging

10

It may be tempting however, to try and include destination SessionID}}s at the client level,

assuming that this will make the infrastructure simpler. But this will not achieve

the desired results, as the bus treats {{SessionID}}s as transient. Meaning, the

{{SessionID information is not ever transmitted from bus-to-bus, and therefore is only directly

relevant to the proximate bus.

Chapter 3.

11

Handling Errors
Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support

for handling errors is built directly into the MessageBuilder API, utilizing the ErrorCallback

interface. In the examples shown in previous exceptions, error-handing has been glossed over

with aubiquitous usage of the noErrorHandling() method while building messaging. We chose to

require the explicit use of such a method to remind developers of the fact that they are responsible

for their own error handling, requiring you to explicitly make the decision to forego handling

potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker

identification of problems with your applications if you have error handlers, and generally help you

build more robust code.

MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 })

 .sendNowWith(dispatcher);

The addition of error-handling at first may put off developers as it makes code more verbose and

less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where

the same error-handler can appropriately be shared between multiple different calls.

ErrorCallback error = new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 }

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(error)

 .sendNowWith(dispatcher);

Chapter 3. Handling Errors

12

A little nicer.

The error handler requires that return a boolean value. This is to indicate whether or not Errai

should perform the defautl error handling actions it would normally take during a failure. You

will almost always want to return true here, unless you are trying to expicitly supress some

undesirably activity by Errai, such as automatic subject-termination in conversations. But this is

almost never the case.

Chapter 4.

13

Asynchronous Message Tasks
In some applications, it may be necessary or desirable to delay transmission of, or continually

stream data to a remote client or group of clients (or from a client to the server). In cases

like this, you can utilize the replyRepeating() , replyDelayed() , sendRepeating() and

sendDelayed() methods in the MessageBuilder .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate

method (either replyDelayed() or sendDelayed()).

MessageBuilder.createConversation(msg)

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .replyDelayed(TimeUnit.SECONDS, 5); // sends the message after 5 seconds.

or

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .sendDelayed(requestDispatcher, TimeUnit.SECONDS, 5); // sends the message

 after 5 seconds.

14

Chapter 5.

15

Repeating Tasks
A repeating task is sent using one of the MessageBuilder's {{repeatXXX()}}methods. The task will

repeat indefinitely until cancelled (see next section).

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .withProvided("time", new ResourceProvider<String>() {

 SimpleDateFormat fmt = new SimpleDateFormat("hh:mm:ss");

 public String get() {

 return fmt.format(new Date(System.currentTimeMillis());

 }

 }

 .noErrorHandling()

 .sendRepeatingWith(requestDispatcher, TimeUnit.SECONDS, 1); //sends a message

 every 1 second

The above example sends a message very 1 second with a message part called{{"time"}},

containing a formatted time string. Note the use of the{{withProvided()}} method; a provided

message part is calculated at the time of transmission as opposed to when the message is

constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the

cancel()}}method of the {{AsyncTask instance which is returned when creating a task.

Reference to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuilder.createConversation(message)

 .toSubject("TimeChannel").signalling()

 .withProvided(TimeServerParts.TimeString, new ResourceProvider<String>() {

 public String get() {

 return String.valueOf(System.currentTimeMillis());

 }

 }).defaultErrorHandling().replyRepeating(TimeUnit.MILLISECONDS, 100);

 ...

 // cancel the task and interrupt it's thread if necessary.

 task.cancel(true);

16

Chapter 6.

17

Remote Procedure Calls (RPC)
ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy

on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it

to be a more useful and concise approach to exposing services to the clients.

Please Note that this API has changed since version 1.0. RPC services provide a way of creating

type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support

client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service

class which implements it. See the following:

@Remote

 public interface MyRemoteService {

 public boolean isEveryoneHappy();

}

The @Remote annotation tells Errai that we'd like to use this interface as a remote interface. The

remote interface must be part of of the GWT client code. It cannot be part of the server-side code,

since the interface will need to be referenced from both the client and server side code. That said,

the implementation of a service is relatively to the point:

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 // blatently lie and say everyone's happy.

 return true;

 }

}

That's all there is to it. You use the same @Service annotation as described in Section 2.4. The

presence of the remote interface tips Errai off as to what you want to do with the class.

Making callsCalling a remote service involves use of the MessageBuilder API. Since all messages

are asynchronous, the actual code for calling the remote service involves the use of a callback,

which we use to receive the response from the remote method. Let's see how it works:

MessageBuilder.createCall(new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

 if (isHappy) Window.alert("Everyone is happy!");

 }

Chapter 6. Remote Procedure C...

18

 }, MyRemoteService.class).isEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correpond to the

return value of the method on the server. We also reference the remote interface we are calling,

and directly call the method. However, don't be tempted to write code like this :

boolean bool = MessageBuilder.createCall(...,

 MyRemoteService.class).isEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0

depending on the type. This is due to the fact that the method is dispatched asynchronously, as

in, it does not wait for a server response before returning control. The reason we chose to do this,

as opposed to emulate the native GWT-approach, which requires the implementation of remote

and async interfaces, was purely a function of a tradeoff for simplicity.

Chapter 7.

19

Queue Sessions
The ErraiBus maintains it's own seperate session management on-top of the regular HTTP

session management. While the queue sessions are tied to, and dependant on HTTP sessions for

the most part (meaning they die when HTTP sessions die), they provide extra layers of session

tracking to make dealing with complex applications built on Errai easier.

7.1. Scopes

One of the things Errai offers is the concept of session and local scopes.

7.1.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

7.1.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

Chapter 7. Queue Sessions

20

}

7.2. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity

thresholds. Clients are required to send heartbeat messages every once in a while to maintain

their sessions with the server. If a heartbeat message is not received after a certain period of time,

the session is terminated and any resources are deallocated.

Chapter 8.

21

Serialization
Serialization on the ErraiBus supports serialization within the same scope and limitations

as the default GWT RPC serialization rules. In order to expose your domain objects to

the bus so they can be exported across the bus, you must annotate them with the

org.jboss.errai.bus.server.annotations.ExposeEntity annotation. The presence of this

annotation will cause Errai's GWT compiler extensions to generate marshall/demarshall stubs for

the annotated objects at compile-time.

For example:

@ExposeEntity

public class User implements java.io.Serializable {

 private int userId;

 public int getUserId() {

 return userId;

 }

 public void setUserId(int userId) {

 this.userId = userId;

 }

 [...]

}

Note

All exposed entities must follow Java Bean convensions, and must be in the

classpath both at compile-time and at runtime. Compile-time access to the entities

is required since the creation of the marshalling/demarshalling proxies involves

code generation.

8.1. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if

the entities are located in a third-party library that you do not maintain. As such, you can explicitly

indicate in the configuration that you would like to have this entities made available by declaring

them in the ErraiApp.properties of any module.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

Chapter 8. Serialization

22

 org.foobie.Foobie

Chapter 9.

23

Wiring server side components
By default, ErraiBus uses Google Guice to wire components. However, we plan on standardizing

on JSR-330 Dependency Injection specification in the near future. When deploying services on the

server-side, it is currently possible to obtain references to the MessageBus , RequestDispatcher

, the ErraiServiceConfigurator , and ErraiService by declaring them as injection

dependencies in Service classes, extension components, and session providers.

24

Chapter 10.

25

Bus Configuration
This section contains information on configuring the server-side bus.

10.1. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate

servlet implementation if you wish to use true, asynchronous I/O. See _section 6.5 _ for information

on the available servlet implementations.

Here's a sample web.xml file:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 version="2.5">

 <servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>errai.properties</param-name>

 <param-value>/WEB-INF/errai.properties</param-value>

 </context-param>

 <context-param>

 <param-name>login.config</param-name>

 <param-value>/WEB-INF/login.config</param-value>

 </context-param>

 <context-param>

 <param-name>users.properties</param-name>

 <param-value>/WEB-INF/users.properties</param-value>

 </context-param>

</web-app>

Chapter 10. Bus Configuration

26

10.2. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

##

Request dispatcher implementation (default is SimpleDispatcher)

##

#errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

errai.dispatcher_implementation=org.jboss.errai.bus.server.AsyncDispatcher

#

Worker pool size. This is the number of threads the asynchronous worker pool

 should provide for

processing

incoming messages. This option is only valid when using the AsyncDispatcher

 implementation.

##

errai.async.thread_pool_size=5

##

Worker timeout (in seconds). This defines the time that a single asychronous

 process may run,

before the worker pool

terminates it and reclaims the thread. This option is only valid when using

 the AsyncDispatcher

implementation.

##

errai.async.worker.timeout=5

##

Specify the Authentication/Authorization Adapter to use

##

#errai.authentication_adapter=org.jboss.errai.persistence.server.security.HibernateAuthenticationAdapter

#errai.authentication_adapter=org.jboss.errai.bus.server.security.auth.JAASAdapter

##

This property indicates whether or not authentication is required for all

 communication with the

bus. Set this

to 'true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

errai.dispatcher.implementation

27

10.2.1. errai.dispatcher.implementation

The errai.dispatcher_implementation defines, as it's name quite succinctly implies, the

dispatcher implementation to be used by the bus. There are two implementations which come

with Errai out of the box: the SimpleDispatcher and the AsyncDispatcher . See section on

Dispatchers for more information about the differences between the two.

10.2.2. errai.async_thread_pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering

messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

10.2.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming

message before the pool interrupts the thread and returns an error. Adjusting this value does not

have an effect if you are using the SimpleDispatcher.

10.2.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls

should be serviced based on authentication and security principles.

10.2.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests

inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any

user must be authenticated before the bus will deliver any messages from the client to any service.

10.2.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

10.2.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for

extensions.

10.3. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top

of any classpath, the subdirectories are scanned for deployable components. As such, all Errai

application modules in a project should contain an ErraiApp.properties at the root of all classpaths

that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)

that cannot be annotated for serialization. (See the section on serialization for more details)

Chapter 10. Bus Configuration

28

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

Chapter 11.

29

Dispatchers
Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere

and seeing that they are delivered to where they need to go. There are two primary

implementations that are provided with Errai, depending on your needs.

11.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.

Rather, when you configure the Errai to use this implementation, messages are delivered to their

endpoints synchronously. The incoming HTTP thread will be held open until the messages are

delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the

SimpleDispatcher can be far preferable when you're developing your application, as any errors

and stack traces will be far more easily traced and some cloud services may not permit the use

of threads in any case.

11.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher

is used, HTTP threads will have control immediately returned upon dispatch of the message.

This dispatcher provides far more efficient use of resources in high-load applications, and will

significantly decrease memory and thread usage overall.

30

Chapter 12.

31

Servlet Implementations
Errai has several different implementations for HTTP traffic to and from the bus. We provide a

universally-compatible blocking implementation that provides fully synchronous communication

to/from the server-side bus. Where this introduces scalability problems, we have implemented

many webserver-specific implementations that take advantage of the various proprietary APIs to

provide true asynchrony.

These inlcuded implementations are packaged at: org.jboss.errai.bus.server.servlet

12.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides

purely synchronous request handling and should work in virtually any servlet container, unless

there are restrictions on putting threads into sleep states.

12.2. TomcatCometServlet

The Tomcat AIO implementation of our servlet allows Errai to take advantage of Tomcat's event-

based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is

dependant on the Tomcat container being configured to support AIO using either it's NIO or APR

connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

12.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless

pausing of port connections. This servlet implementation should work without any special

configuration of Jetty.

12.4. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve

scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use

of this implementation requires use of the APR (Apache Portable Runtime).

12.5. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

12.6. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

32

Chapter 13.

33

Debugging Errai Applications
Errai includes a bus monitoring application, which allows you to monitor all of the message

exchange activity on the bus in order to help track down any potential problems It allows you to

inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your

application's dependencies. When you run your application in development mode, you will simply

need to add the following JVM options to your run configuration in order to launch the monitor: -

Derrai.tools.bus_monitor_attach=true

Figure 13.1. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side

of the main screen lists the services that are currently available, and the right side is the service-

explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the

service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 13.2. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus

since the monitor became active. You do not need to actually have each specific monitor window

open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a

message part will bring up the object inspector, which will allow you to explore the state of any

objects contained within the message, not unlike the object inspectors provided by debuggers in

your favorite IDE. This can be a powerful tool for looking under the covers of your application.

34

Chapter 14.

35

Downloads
The distribution packages can be downloaded from jboss.org http://jboss.org/errai/

Downloads.html

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

36

Chapter 15.

37

Sources
Errai is currently managed using Github. You can clone our repositories from http://github.com/

errai .

http://github.com/errai
http://github.com/errai

38

Chapter 16.

39

License and EULA
Errai is distributed under the terms of the the Apache License, Version 2.0. See the full Apache

license text [http://www.apache.org/licenses/LICENSE-2.0] .

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

40

Chapter 17.

41

Introduction

17.1. What is it

Errai is a GWT-based framework for building rich web applications using next-generation web

technologies. Built on-top of ErraiBus, the framework provides a unified federation and RPC

infrastructure with true, uniform, asynchronous messaging across the client and server.

17.2. Installation

17.2.1. Required software

Errai requires a JDK version 6 or higher and depends on Apache Maven to build and run the

examples, and for leveraging the quickstart utilities.

• JDK 6.0: http://java.sun.com/javase/downloads/index.jsp

• Apache Maven: http://maven.apache.org/download.html

Launching maven the first time

Please note, that when launching maven the first time on your machine, it will

fetch all dependencies from a central repository. This may take a while, because it

includes downloading large binaries like GWT SDK. However, subsequent builds

are not required to go through this step and will be much faster.

http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

42

Chapter 18.

43

License and EULA
Errai is distributed under the terms of the the Apache License, Version 2.0. See the full Apache

license text [http://www.apache.org/licenses/LICENSE-2.0] .

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

44

Chapter 19.

45

Downloads
The distribution packages can be downloaded from jboss.org http://jboss.org/errai/

Downloads.html

http://jboss.org/errai/Downloads.html
http://jboss.org/errai/Downloads.html

46

Chapter 20.

47

Sources
Errai is currently managed using Github. You can clone our repositories from http://github.com/

errai .

http://github.com/errai
http://github.com/errai

48

Chapter 21.

49

Errai Bus

21.1. Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

21.1.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints

are given string-based names that are referenced by message senders. There is no difference

between sending a message to a client-based service, or sending a message to a server-based

service. In fact, a service of the same name may co-exist on both the client and the server and

both will receive all messages bound for that service name, whether they are sent from the client

or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your

application to provide a message-based infrastructure for your web application. It can be tempting

to think of ErraiBus simply as a client-server communication platform, but there is a plethora of

possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and

expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into

having the capabilities it now has today. So keep that in mind when you run up against problems

in the client space that could benefit from runtime federation.

21.1.2. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder

API, that is used for constructing messages. All three major message patterns can be constructed

from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCallback interface.

But before we dive into the details, let look at some use cases first.

Sending Messages with the Client BusIn order to send a message from a client you need to create

a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we

send it to the subject 'HelloWorldService'.

public class HelloWorld implements EntryPoint {

// Get an instance of the RequestDispatcher

 private RequestDispatcher dispatcher = ErraiBus.getDispatcher();

 public void onModuleLoad() {

Chapter 21. Errai Bus

50

 Button button = new Button("Send message");

 button.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 // Send a message to the 'HelloWorldService'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService") // (1)

 .signalling() // (2)

 .noErrorHandling() // (3)

 .sendNowWith(dispatcher); // (4)

 });

 [...]

 }

 }

}

In the above example we build and send a message every time the button is clicked. Here's an

explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldService ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

4. We transmit the message by providing an instance to the RequestDispatcher

Note

An astute observer will note that access to the RequestDispatcher differs

within client code and server code. Because the client code does not run within

a container, access to the RequestDispatcher and MessageBus is statically

accessed using the ErraiBus.get() and ErraiBus.getDispatcher() methods.

The server-side code, conversely, runs inside a dependency container for

managing components. It currently uses Guice as the default container, but will

more generically support the JSR-330 specification in the future.

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at

least one receiver. A receiver is as it sounds--it receives the message and does something with it.

Implementing a receiver (also referred to as a service) is as simple as implementing our standard

MessageCallback interface, which is used pervasively across, both client and server code. Let's

begin with server side component that receives messages:

MessageBuilder API

51

@Service

 public class HelloWorldService implements MessageCallback {

 public void callback(Message message) {

 System.out.println("Hello, World!");

 }

 }

He we declare an extremely simple service. The @Service annotation provides a convenient,

meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server BusIn the following example we extend our server side

component to reply with a message when the callback method is invoked. It will create a message

and address it to the subject ' HelloWorldClient ':

@Service

public class HelloWorldService implements MessageCallback {

 private RequestDispatcher dispatcher;

 @Inject

 public HelloWorldService(RequestDispatcher disaptcher) {

 dispatcher = dispatcher;

 }

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldClient") // (1)

 .signalling() // (2)

 .with("text", "Hi There") // (3)

 .noErrorHandling() // (4)

 .sendNowWith(dispatcher); // (5)

 });

 }

}

The above example shows a service which sends a message in response to receiving a message.

Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldClient ". We

are sending this message to all clients which are listening in on this subject. For information on

how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols.

Chapter 21. Errai Bus

52

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

5. We transmit the message by providing an instance of the RequestDispatcher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously

and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open

COMET channel at all times, these messages are delivered in real time to the client as they are

sent. This provides built-in push messaging for all client services.

public class HelloWorld implements EntryPoint {

 private MessageBus bus = ErraiBus.get();

 public void onModuleLoad() {

 [...]

 /**

 * Declare a local service to receive messages on the subject

 * "BroadcastReceiver".

 */

 bus.subscribe("BroadcastReceiver", new MessageCallback() {

 public void callback(CommandMessage message) {

 /**

 * When a message arrives, extract the "text" field and

 * do something with it

 */

 String messageText = message.get(String.class, "text");

 }

 });

 [...]

 }

}

In the above example, we declare a new client service called "BroadcastReceiver" which can

now accept both local messages and remote messages from the server bus. The service will be

available in the client to receive messages as long the client bus is and the service is not explicitly

de-registered.

ConversationsConversations are message exchanges which are between a single client and a

service. They are a fundmentally important concept in ErraiBus, since by default, a message will

be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

Single-Response Conversations & Psuedo-Synchronous Messaging

53

@Service

public class HelloWorldService implements MessageCallback {

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient' on the client that sent us the

 // the message.

 MessageBuilder.createConversation(message)

 .toSubject("HelloWorldClient")

 .signalling()

 .with("text", "Hi There! We're having a reply!")

 .noErrorHandling().reply();

 });

 }

}

Note that the only difference between the example in the previous section (2.4) and this is the use

of the createConversation()}}method with {{MessageBuilder .

21.1.3. Single-Response Conversations & Psuedo-Synchronous

Messaging

It is possible to contruct a message and a default response handler as part of the MessageBuilder

API. It should be noted, that multiple replies will not be possible and will result an exception

if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous

conversive things.

You can do this by specifying a MessageCallback using the repliesTo() method in the

MessageBuilder API after specifying the error handling of the message.

MessageBuilder.createMessage()

 .toSubject("ConversationalService").signalling()

 .with("SomeField", someValue)

 .noErrorHandling()

 .repliesTo(new MessageCallback() {

 public void callback(Message message) {

 System.out.println("I received a response");

 }

 })

See the next section on how to build conversational services that can respond to such messages.

21.1.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it

would like the reply to go to. This is accomplished by utilizing the standard MessageParts.ReplyTo

message part. Using this methodology for building conversations is generally encouraged.

Chapter 21. Errai Bus

54

Consider the following client side code:

MessageBuilder.createMessage()

 .toSubject("ObjectService").signalling()

 .with(MessageParts.ReplyTo, "ClientEndpoint")

 .noErrorHandling().sendNowWith(dispatcher);

And the conversational code on the server (for service ObjectService):

MessageBuilder.createConversation(message)

 .subjectProvided().signalling()

 .with("Records", records)

 .noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called "

ObjectService " and is referencing the incoming message that was sent in the former example,

the message created will automatically reference the ReplyTo subject that was provided by the

sender, and send the message back to the subject desired by the client on the client that sent

the message.

21.1.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves

nothing more than forgoing use of the reply API. For instance:

MessageBuilder.createMessage().

 .toSubject("MessageListener")

 .with("Text", "Hello, from your overlords in the cloud")

 .noErrorHandling().sendGlobalWith(dispatcher);

If sent from the server, all clients currently connected, who are listening to the subject

"MessageListener" will receive the message. It's as simple as that.

21.1.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

Message Routing Information

55

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs

on the server. Since a service advertised on the server is visible to all clients and all clients are

visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 21.14.13, “Message Routing Information”

21.1.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain

session routing information. This information is used by the bus to determine what outbound

queues to use to deliver the message to, so they will reach their intended recipients. It is possible to

manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class org.jboss.errai.bus.server.util.ServerBusUtils contains a utility method

for extracting the String-based SessionID which is used to identify the message queue associated

with any particular client. You may use this method to extract the SessionID from a message so

that you may use it for routing. For example:

...

 public void callback(Message message) {

 String sessionId = ServerBusUtils.getSessionId(message);

 // Record this sessionId somewhere.

 ...

 }

The SessionID can then be stored in a medium, say a Map, to cross-reference specific users or

whatever identifier you wish to allow one client to obtain a reference to the specific SessionID of

another client. In which case, you can then provide the SessionID as a MessagePart to indicate

to the bus where you want the message to go.

MessageBuilder.createMessage()

 .toSubject("ClientMessageListener")

 .signalling()

 .with(MessageParts.SessionID, sessionId)

 .with("Message", "We're relaying a message!")

 .noErrorHandling().sendNowWith(dispatcher);

Chapter 21. Errai Bus

56

By providing the SessionID part in the message, the bus will see this and use it for routing the

message to the relevant queue.

Now you're routing from client-to-client!

It may be tempting however, to try and include destination SessionID}}s at the client level,

assuming that this will make the infrastructure simpler. But this will not achieve

the desired results, as the bus treats {{SessionID}}s as transient. Meaning, the

{{SessionID information is not ever transmitted from bus-to-bus, and therefore is only directly

relevant to the proximate bus.

21.2. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support

for handling errors is built directly into the MessageBuilder API, utilizing the ErrorCallback

interface. In the examples shown in previous exceptions, error-handing has been glossed over

with aubiquitous usage of the noErrorHandling() method while building messaging. We chose to

require the explicit use of such a method to remind developers of the fact that they are responsible

for their own error handling, requiring you to explicitly make the decision to forego handling

potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker

identification of problems with your applications if you have error handlers, and generally help you

build more robust code.

MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 })

 .sendNowWith(dispatcher);

The addition of error-handling at first may put off developers as it makes code more verbose and

less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where

the same error-handler can appropriately be shared between multiple different calls.

ErrorCallback error = new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

Asynchronous Message Tasks

57

 }

 }

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(error)

 .sendNowWith(dispatcher);

A little nicer.

The error handler requires that return a boolean value. This is to indicate whether or not Errai

should perform the defautl error handling actions it would normally take during a failure. You

will almost always want to return true here, unless you are trying to expicitly supress some

undesirably activity by Errai, such as automatic subject-termination in conversations. But this is

almost never the case.

21.3. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually

stream data to a remote client or group of clients (or from a client to the server). In cases

like this, you can utilize the replyRepeating() , replyDelayed() , sendRepeating() and

sendDelayed() methods in the MessageBuilder .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate

method (either replyDelayed() or sendDelayed()).

MessageBuilder.createConversation(msg)

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .replyDelayed(TimeUnit.SECONDS, 5); // sends the message after 5 seconds.

or

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .sendDelayed(requestDispatcher, TimeUnit.SECONDS, 5); // sends the message

 after 5 seconds.

Chapter 21. Errai Bus

58

21.4. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's {{repeatXXX()}}methods. The task will

repeat indefinitely until cancelled (see next section).

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .withProvided("time", new ResourceProvider<String>() {

 SimpleDateFormat fmt = new SimpleDateFormat("hh:mm:ss");

 public String get() {

 return fmt.format(new Date(System.currentTimeMillis());

 }

 }

 .noErrorHandling()

 .sendRepeatingWith(requestDispatcher, TimeUnit.SECONDS, 1); //sends a message

 every 1 second

The above example sends a message very 1 second with a message part called{{"time"}},

containing a formatted time string. Note the use of the{{withProvided()}} method; a provided

message part is calculated at the time of transmission as opposed to when the message is

constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the

cancel()}}method of the {{AsyncTask instance which is returned when creating a task.

Reference to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuilder.createConversation(message)

 .toSubject("TimeChannel").signalling()

 .withProvided(TimeServerParts.TimeString, new ResourceProvider<String>() {

 public String get() {

 return String.valueOf(System.currentTimeMillis());

 }

 }).defaultErrorHandling().replyRepeating(TimeUnit.MILLISECONDS, 100);

 ...

 // cancel the task and interrupt it's thread if necessary.

 task.cancel(true);

Remote Procedure Calls (RPC)

59

21.5. Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy

on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it

to be a more useful and concise approach to exposing services to the clients.

Please Note that this API has changed since version 1.0. RPC services provide a way of creating

type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support

client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service

class which implements it. See the following:

@Remote

 public interface MyRemoteService {

 public boolean isEveryoneHappy();

}

The @Remote annotation tells Errai that we'd like to use this interface as a remote interface. The

remote interface must be part of of the GWT client code. It cannot be part of the server-side code,

since the interface will need to be referenced from both the client and server side code. That said,

the implementation of a service is relatively to the point:

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 // blatently lie and say everyone's happy.

 return true;

 }

}

That's all there is to it. You use the same @Service annotation as described in Section 2.4. The

presence of the remote interface tips Errai off as to what you want to do with the class.

Making callsCalling a remote service involves use of the MessageBuilder API. Since all messages

are asynchronous, the actual code for calling the remote service involves the use of a callback,

which we use to receive the response from the remote method. Let's see how it works:

MessageBuilder.createCall(new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

 if (isHappy) Window.alert("Everyone is happy!");

 }

Chapter 21. Errai Bus

60

 }, MyRemoteService.class).isEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correpond to the

return value of the method on the server. We also reference the remote interface we are calling,

and directly call the method. However, don't be tempted to write code like this :

boolean bool = MessageBuilder.createCall(...,

 MyRemoteService.class).isEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0

depending on the type. This is due to the fact that the method is dispatched asynchronously, as

in, it does not wait for a server response before returning control. The reason we chose to do this,

as opposed to emulate the native GWT-approach, which requires the implementation of remote

and async interfaces, was purely a function of a tradeoff for simplicity.

21.6. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP

session management. While the queue sessions are tied to, and dependant on HTTP sessions for

the most part (meaning they die when HTTP sessions die), they provide extra layers of session

tracking to make dealing with complex applications built on Errai easier.

21.6.1. Scopes

One of the things Errai offers is the concept of session and local scopes.

21.6.1.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

Lifecycle

61

21.6.1.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

21.6.2. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity

thresholds. Clients are required to send heartbeat messages every once in a while to maintain

their sessions with the server. If a heartbeat message is not received after a certain period of time,

the session is terminated and any resources are deallocated.

21.7. Serialization

Serialization on the ErraiBus supports serialization within the same scope and limitations

as the default GWT RPC serialization rules. In order to expose your domain objects to

the bus so they can be exported across the bus, you must annotate them with the

org.jboss.errai.bus.server.annotations.ExposeEntity annotation. The presence of this

annotation will cause Errai's GWT compiler extensions to generate marshall/demarshall stubs for

the annotated objects at compile-time.

For example:

@ExposeEntity

public class User implements java.io.Serializable {

 private int userId;

 public int getUserId() {

 return userId;

 }

 public void setUserId(int userId) {

Chapter 21. Errai Bus

62

 this.userId = userId;

 }

 [...]

}

Note

All exposed entities must follow Java Bean convensions, and must be in the

classpath both at compile-time and at runtime. Compile-time access to the entities

is required since the creation of the marshalling/demarshalling proxies involves

code generation.

21.7.1. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if

the entities are located in a third-party library that you do not maintain. As such, you can explicitly

indicate in the configuration that you would like to have this entities made available by declaring

them in the ErraiApp.properties of any module.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

21.8. Wiring server side components

By default, ErraiBus uses Google Guice to wire components. However, we plan on standardizing

on JSR-330 Dependency Injection specification in the near future. When deploying services on the

server-side, it is currently possible to obtain references to the MessageBus , RequestDispatcher

, the ErraiServiceConfigurator , and ErraiService by declaring them as injection

dependencies in Service classes, extension components, and session providers.

21.9. Bus Configuration

This section contains information on configuring the server-side bus.

21.9.1. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate

servlet implementation if you wish to use true, asynchronous I/O. See _section 6.5 _ for information

on the available servlet implementations.

Here's a sample web.xml file:

ErraiService.properties

63

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 version="2.5">

 <servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

 </servlet-mapping>

 <context-param>

 <param-name>errai.properties</param-name>

 <param-value>/WEB-INF/errai.properties</param-value>

 </context-param>

 <context-param>

 <param-name>login.config</param-name>

 <param-value>/WEB-INF/login.config</param-value>

 </context-param>

 <context-param>

 <param-name>users.properties</param-name>

 <param-value>/WEB-INF/users.properties</param-value>

 </context-param>

</web-app>

21.9.2. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

##

Request dispatcher implementation (default is SimpleDispatcher)

##

#errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

errai.dispatcher_implementation=org.jboss.errai.bus.server.AsyncDispatcher

Chapter 21. Errai Bus

64

#

Worker pool size. This is the number of threads the asynchronous worker pool

 should provide for

processing

incoming messages. This option is only valid when using the AsyncDispatcher

 implementation.

##

errai.async.thread_pool_size=5

##

Worker timeout (in seconds). This defines the time that a single asychronous

 process may run,

before the worker pool

terminates it and reclaims the thread. This option is only valid when using

 the AsyncDispatcher

implementation.

##

errai.async.worker.timeout=5

##

Specify the Authentication/Authorization Adapter to use

##

#errai.authentication_adapter=org.jboss.errai.persistence.server.security.HibernateAuthenticationAdapter

#errai.authentication_adapter=org.jboss.errai.bus.server.security.auth.JAASAdapter

##

This property indicates whether or not authentication is required for all

 communication with the

bus. Set this

to 'true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

21.9.2.1. errai.dispatcher.implementation

The errai.dispatcher_implementation defines, as it's name quite succinctly implies, the

dispatcher implementation to be used by the bus. There are two implementations which come

with Errai out of the box: the SimpleDispatcher and the AsyncDispatcher . See section on

Dispatchers for more information about the differences between the two.

21.9.2.2. errai.async_thread_pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering

messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

ErraiApp.properties

65

21.9.2.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming

message before the pool interrupts the thread and returns an error. Adjusting this value does not

have an effect if you are using the SimpleDispatcher.

21.9.2.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls

should be serviced based on authentication and security principles.

21.9.2.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests

inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any

user must be authenticated before the bus will deliver any messages from the client to any service.

21.9.2.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

21.9.2.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for

extensions.

21.9.3. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top

of any classpath, the subdirectories are scanned for deployable components. As such, all Errai

application modules in a project should contain an ErraiApp.properties at the root of all classpaths

that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)

that cannot be annotated for serialization. (See the section on serialization for more details)

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

21.10. Dispatchers

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere

and seeing that they are delivered to where they need to go. There are two primary

implementations that are provided with Errai, depending on your needs.

Chapter 21. Errai Bus

66

21.10.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.

Rather, when you configure the Errai to use this implementation, messages are delivered to their

endpoints synchronously. The incoming HTTP thread will be held open until the messages are

delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the

SimpleDispatcher can be far preferable when you're developing your application, as any errors

and stack traces will be far more easily traced and some cloud services may not permit the use

of threads in any case.

21.10.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher

is used, HTTP threads will have control immediately returned upon dispatch of the message.

This dispatcher provides far more efficient use of resources in high-load applications, and will

significantly decrease memory and thread usage overall.

21.11. Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a

universally-compatible blocking implementation that provides fully synchronous communication

to/from the server-side bus. Where this introduces scalability problems, we have implemented

many webserver-specific implementations that take advantage of the various proprietary APIs to

provide true asynchrony.

These inlcuded implementations are packaged at: org.jboss.errai.bus.server.servlet

21.11.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides

purely synchronous request handling and should work in virtually any servlet container, unless

there are restrictions on putting threads into sleep states.

21.11.2. TomcatCometServlet

The Tomcat AIO implementation of our servlet allows Errai to take advantage of Tomcat's event-

based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is

dependant on the Tomcat container being configured to support AIO using either it's NIO or APR

connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

21.11.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless

pausing of port connections. This servlet implementation should work without any special

configuration of Jetty.

JBossCometServlet

67

21.11.4. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve

scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use

of this implementation requires use of the APR (Apache Portable Runtime).

21.11.5. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

21.11.6. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

21.12. Debugging Errai Applications

Errai includes a bus monitoring application, which allows you to monitor all of the message

exchange activity on the bus in order to help track down any potential problems It allows you to

inspect individual messages to examine their state and structure.

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your

application's dependencies. When you run your application in development mode, you will simply

need to add the following JVM options to your run configuration in order to launch the monitor: -

Derrai.tools.bus_monitor_attach=true

Figure 21.1. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side

of the main screen lists the services that are currently available, and the right side is the service-

explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the

service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 21.2. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus

since the monitor became active. You do not need to actually have each specific monitor window

open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a

message part will bring up the object inspector, which will allow you to explore the state of any

objects contained within the message, not unlike the object inspectors provided by debuggers in

your favorite IDE. This can be a powerful tool for looking under the covers of your application.

Chapter 21. Errai Bus

68

21.13. What is Errai Bus?

ErraiBus forms the backbone of the Errai framework's approach to application design. Most

importantly, it provides a straight-forward approach to a complex problem space. Providing

common APIs across the client and server, developers will have no trouble working with

complex messaging scenarios from building instant messaging clients, stock tickers, to monitoring

instruments. There's no more messing with RPC APIs, or unweildy AJAX or COMET frameworks.

We've built it all in to one, consice messaging framework. It's single-paradigm, and it's fun to work

with.

21.14. Messaging

This section covers the core messaging concepts of the ErraiBus messaging framework.

21.14.1. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints

are given string-based names that are referenced by message senders. There is no difference

between sending a message to a client-based service, or sending a message to a server-based

service. In fact, a service of the same name may co-exist on both the client and the server and

both will receive all messages bound for that service name, whether they are sent from the client

or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your

application to provide a message-based infrastructure for your web application. It can be tempting

to think of ErraiBus simply as a client-server communication platform, but there is a plethora of

possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and

expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into

having the capabilities it now has today. So keep that in mind when you run up against problems

in the client space that could benefit from runtime federation.

21.14.2. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder

API, that is used for constructing messages. All three major message patterns can be constructed

from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCallback interface.

But before we dive into the details, let look at some use cases first.

Sending Messages with the Client BusIn order to send a message from a client you need to create

a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we

send it to the subject 'HelloWorldService'.

MessageBuilder API

69

public class HelloWorld implements EntryPoint {

// Get an instance of the RequestDispatcher

 private RequestDispatcher dispatcher = ErraiBus.getDispatcher();

 public void onModuleLoad() {

 Button button = new Button("Send message");

 button.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 // Send a message to the 'HelloWorldService'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService") // (1)

 .signalling() // (2)

 .noErrorHandling() // (3)

 .sendNowWith(dispatcher); // (4)

 });

 [...]

 }

 }

}

In the above example we build and send a message every time the button is clicked. Here's an

explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldService ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

4. We transmit the message by providing an instance to the RequestDispatcher

Note

An astute observer will note that access to the RequestDispatcher differs

within client code and server code. Because the client code does not run within

a container, access to the RequestDispatcher and MessageBus is statically

accessed using the ErraiBus.get() and ErraiBus.getDispatcher() methods.

The server-side code, conversely, runs inside a dependency container for

managing components. It currently uses Guice as the default container, but will

more generically support the JSR-330 specification in the future.

Chapter 21. Errai Bus

70

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at

least one receiver. A receiver is as it sounds--it receives the message and does something with it.

Implementing a receiver (also referred to as a service) is as simple as implementing our standard

MessageCallback interface, which is used pervasively across, both client and server code. Let's

begin with server side component that receives messages:

@Service

 public class HelloWorldService implements MessageCallback {

 public void callback(Message message) {

 System.out.println("Hello, World!");

 }

 }

He we declare an extremely simple service. The @Service annotation provides a convenient,

meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server BusIn the following example we extend our server side

component to reply with a message when the callback method is invoked. It will create a message

and address it to the subject ' HelloWorldClient ':

@Service

public class HelloWorldService implements MessageCallback {

 private RequestDispatcher dispatcher;

 @Inject

 public HelloWorldService(RequestDispatcher disaptcher) {

 dispatcher = dispatcher;

 }

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldClient") // (1)

 .signalling() // (2)

 .with("text", "Hi There") // (3)

 .noErrorHandling() // (4)

 .sendNowWith(dispatcher); // (5)

 });

 }

}

The above example shows a service which sends a message in response to receiving a message.

Here's what's going on:

MessageBuilder API

71

1. We specify the subject we wish to send a message to. In this case, " HelloWorldClient ". We

are sending this message to all clients which are listening in on this subject. For information on

how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

5. We transmit the message by providing an instance of the RequestDispatcher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously

and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open

COMET channel at all times, these messages are delivered in real time to the client as they are

sent. This provides built-in push messaging for all client services.

public class HelloWorld implements EntryPoint {

 private MessageBus bus = ErraiBus.get();

 public void onModuleLoad() {

 [...]

 /**

 * Declare a local service to receive messages on the subject

 * "BroadcastReceiver".

 */

 bus.subscribe("BroadcastReceiver", new MessageCallback() {

 public void callback(CommandMessage message) {

 /**

 * When a message arrives, extract the "text" field and

 * do something with it

 */

 String messageText = message.get(String.class, "text");

 }

 });

 [...]

 }

}

In the above example, we declare a new client service called "BroadcastReceiver" which can

now accept both local messages and remote messages from the server bus. The service will be

available in the client to receive messages as long the client bus is and the service is not explicitly

de-registered.

Chapter 21. Errai Bus

72

ConversationsConversations are message exchanges which are between a single client and a

service. They are a fundmentally important concept in ErraiBus, since by default, a message will

be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

@Service

public class HelloWorldService implements MessageCallback {

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient' on the client that sent us the

 // the message.

 MessageBuilder.createConversation(message)

 .toSubject("HelloWorldClient")

 .signalling()

 .with("text", "Hi There! We're having a reply!")

 .noErrorHandling().reply();

 });

 }

}

Note that the only difference between the example in the previous section (2.4) and this is the use

of the createConversation()}}method with {{MessageBuilder .

21.14.3. Single-Response Conversations & Psuedo-

Synchronous Messaging

It is possible to contruct a message and a default response handler as part of the MessageBuilder

API. It should be noted, that multiple replies will not be possible and will result an exception

if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous

conversive things.

You can do this by specifying a MessageCallback using the repliesTo() method in the

MessageBuilder API after specifying the error handling of the message.

MessageBuilder.createMessage()

 .toSubject("ConversationalService").signalling()

 .with("SomeField", someValue)

 .noErrorHandling()

 .repliesTo(new MessageCallback() {

 public void callback(Message message) {

 System.out.println("I received a response");

 }

 })

Sender Inferred Subjects

73

See the next section on how to build conversational services that can respond to such messages.

21.14.4. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it

would like the reply to go to. This is accomplished by utilizing the standard MessageParts.ReplyTo

message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBuilder.createMessage()

 .toSubject("ObjectService").signalling()

 .with(MessageParts.ReplyTo, "ClientEndpoint")

 .noErrorHandling().sendNowWith(dispatcher);

And the conversational code on the server (for service ObjectService):

MessageBuilder.createConversation(message)

 .subjectProvided().signalling()

 .with("Records", records)

 .noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called "

ObjectService " and is referencing the incoming message that was sent in the former example,

the message created will automatically reference the ReplyTo subject that was provided by the

sender, and send the message back to the subject desired by the client on the client that sent

the message.

21.14.5. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves

nothing more than forgoing use of the reply API. For instance:

MessageBuilder.createMessage().

 .toSubject("MessageListener")

 .with("Text", "Hello, from your overlords in the cloud")

 .noErrorHandling().sendGlobalWith(dispatcher);

If sent from the server, all clients currently connected, who are listening to the subject

"MessageListener" will receive the message. It's as simple as that.

Chapter 21. Errai Bus

74

21.14.6. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs

on the server. Since a service advertised on the server is visible to all clients and all clients are

visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 21.14.13, “Message Routing Information”

21.14.7. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain

session routing information. This information is used by the bus to determine what outbound

queues to use to deliver the message to, so they will reach their intended recipients. It is possible to

manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class org.jboss.errai.bus.server.util.ServerBusUtils contains a utility method

for extracting the String-based SessionID which is used to identify the message queue associated

with any particular client. You may use this method to extract the SessionID from a message so

that you may use it for routing. For example:

...

 public void callback(Message message) {

 String sessionId = ServerBusUtils.getSessionId(message);

 // Record this sessionId somewhere.

 ...

 }

The SessionID can then be stored in a medium, say a Map, to cross-reference specific users or

whatever identifier you wish to allow one client to obtain a reference to the specific SessionID of

another client. In which case, you can then provide the SessionID as a MessagePart to indicate

to the bus where you want the message to go.

Messaging Overview

75

MessageBuilder.createMessage()

 .toSubject("ClientMessageListener")

 .signalling()

 .with(MessageParts.SessionID, sessionId)

 .with("Message", "We're relaying a message!")

 .noErrorHandling().sendNowWith(dispatcher);

By providing the SessionID part in the message, the bus will see this and use it for routing the

message to the relevant queue.

Now you're routing from client-to-client!

It may be tempting however, to try and include destination SessionID}}s at the client level,

assuming that this will make the infrastructure simpler. But this will not achieve

the desired results, as the bus treats {{SessionID}}s as transient. Meaning, the

{{SessionID information is not ever transmitted from bus-to-bus, and therefore is only directly

relevant to the proximate bus.

21.14.8. Messaging Overview

It's important to understand the concept of how messaging works in ErraiBus. Service endpoints

are given string-based names that are referenced by message senders. There is no difference

between sending a message to a client-based service, or sending a message to a server-based

service. In fact, a service of the same name may co-exist on both the client and the server and

both will receive all messages bound for that service name, whether they are sent from the client

or from the server.

Services are lightweight in ErraiBus, and can be declared liberally and extensively within your

application to provide a message-based infrastructure for your web application. It can be tempting

to think of ErraiBus simply as a client-server communication platform, but there is a plethora of

possibilities for using ErraiBus purely with the GWT client context, such as a way to advertise and

expose components dynamically, to get around the lack of reflection in GWT.

In fact, ErraiBus was originally designed to run completely within the client but quickly evolved into

having the capabilities it now has today. So keep that in mind when you run up against problems

in the client space that could benefit from runtime federation.

21.14.9. MessageBuilder API

The MessageBuilder is the heart of the messaging API in ErraiBus. It provides a fluent / builder

API, that is used for constructing messages. All three major message patterns can be constructed

from the{{MessageBuilder}}.

Components that want to receive messages need to implement the MessageCallback interface.

But before we dive into the details, let look at some use cases first.

Chapter 21. Errai Bus

76

Sending Messages with the Client BusIn order to send a message from a client you need to create

a _ Message _ and send it through an instance of{{MessageBus}}. In this simple example we

send it to the subject 'HelloWorldService'.

public class HelloWorld implements EntryPoint {

// Get an instance of the RequestDispatcher

 private RequestDispatcher dispatcher = ErraiBus.getDispatcher();

 public void onModuleLoad() {

 Button button = new Button("Send message");

 button.addClickHandler(new ClickHandler() {

 public void onClick(ClickEvent event) {

 // Send a message to the 'HelloWorldService'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService") // (1)

 .signalling() // (2)

 .noErrorHandling() // (3)

 .sendNowWith(dispatcher); // (4)

 });

 [...]

 }

 }

}

In the above example we build and send a message every time the button is clicked. Here's an

explanation of what's going on as annotated above:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldService ".

2. We indicate that we wish to only signal the service, meaning, that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols .

3. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

4. We transmit the message by providing an instance to the RequestDispatcher

Note

An astute observer will note that access to the RequestDispatcher differs

within client code and server code. Because the client code does not run within

a container, access to the RequestDispatcher and MessageBus is statically

MessageBuilder API

77

accessed using the ErraiBus.get() and ErraiBus.getDispatcher() methods.

The server-side code, conversely, runs inside a dependency container for

managing components. It currently uses Guice as the default container, but will

more generically support the JSR-330 specification in the future.

Recieving Messages on the Server Bus / Server ServicesEvery message has a sender and at

least one receiver. A receiver is as it sounds--it receives the message and does something with it.

Implementing a receiver (also referred to as a service) is as simple as implementing our standard

MessageCallback interface, which is used pervasively across, both client and server code. Let's

begin with server side component that receives messages:

@Service

 public class HelloWorldService implements MessageCallback {

 public void callback(Message message) {

 System.out.println("Hello, World!");

 }

 }

He we declare an extremely simple service. The @Service annotation provides a convenient,

meta-data based way of having the bus auto-discover and deploy the service.

Sending Messages with the Server BusIn the following example we extend our server side

component to reply with a message when the callback method is invoked. It will create a message

and address it to the subject ' HelloWorldClient ':

@Service

public class HelloWorldService implements MessageCallback {

 private RequestDispatcher dispatcher;

 @Inject

 public HelloWorldService(RequestDispatcher disaptcher) {

 dispatcher = dispatcher;

 }

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient'.

 MessageBuilder.createMessage()

 .toSubject("HelloWorldClient") // (1)

 .signalling() // (2)

 .with("text", "Hi There") // (3)

 .noErrorHandling() // (4)

 .sendNowWith(dispatcher); // (5)

 });

 }

Chapter 21. Errai Bus

78

}

The above example shows a service which sends a message in response to receiving a message.

Here's what's going on:

1. We specify the subject we wish to send a message to. In this case, " HelloWorldClient ". We

are sending this message to all clients which are listening in on this subject. For information on

how to communicate with a single client, see Section 2.6.

2. We indicate that we wish to only signal the service, meaning that we're not sending a qualifying

command to the service. For information on this, read the section on Protocols.

3. We add a message part called "text" which contains the value "Hi there".

4. We indicate that we do not want to provide an ErrorCallback to deal with errors for this

message.

5. We transmit the message by providing an instance of the RequestDispatcher .

Receiving Messages on the Client Bus/ Client ServicesMessages can be received asynchronously

and arbitriraily by declaring callback services within the client bus. As ErraiBus maintains an open

COMET channel at all times, these messages are delivered in real time to the client as they are

sent. This provides built-in push messaging for all client services.

public class HelloWorld implements EntryPoint {

 private MessageBus bus = ErraiBus.get();

 public void onModuleLoad() {

 [...]

 /**

 * Declare a local service to receive messages on the subject

 * "BroadcastReceiver".

 */

 bus.subscribe("BroadcastReceiver", new MessageCallback() {

 public void callback(CommandMessage message) {

 /**

 * When a message arrives, extract the "text" field and

 * do something with it

 */

 String messageText = message.get(String.class, "text");

 }

 });

 [...]

 }

Single-Response Conversations & Psuedo-Synchronous Messaging

79

}

In the above example, we declare a new client service called "BroadcastReceiver" which can

now accept both local messages and remote messages from the server bus. The service will be

available in the client to receive messages as long the client bus is and the service is not explicitly

de-registered.

ConversationsConversations are message exchanges which are between a single client and a

service. They are a fundmentally important concept in ErraiBus, since by default, a message will

be broadcast to all client services listening on a particular channel.

When you create a reply with an incoming message, you ensure that the message you are sending

back is received by the same client which sent the incoming message. A simple example:

@Service

public class HelloWorldService implements MessageCallback {

 public void callback(CommandMessage message) {

 // Send a message to the 'HelloWorldClient' on the client that sent us the

 // the message.

 MessageBuilder.createConversation(message)

 .toSubject("HelloWorldClient")

 .signalling()

 .with("text", "Hi There! We're having a reply!")

 .noErrorHandling().reply();

 });

 }

}

Note that the only difference between the example in the previous section (2.4) and this is the use

of the createConversation()}}method with {{MessageBuilder .

21.14.10. Single-Response Conversations & Psuedo-

Synchronous Messaging

It is possible to contruct a message and a default response handler as part of the MessageBuilder

API. It should be noted, that multiple replies will not be possible and will result an exception

if attempted. Using this aspect of the API is very useful for doing simple psuedo-synchronous

conversive things.

You can do this by specifying a MessageCallback using the repliesTo() method in the

MessageBuilder API after specifying the error handling of the message.

MessageBuilder.createMessage()

 .toSubject("ConversationalService").signalling()

 .with("SomeField", someValue)

Chapter 21. Errai Bus

80

 .noErrorHandling()

 .repliesTo(new MessageCallback() {

 public void callback(Message message) {

 System.out.println("I received a response");

 }

 })

See the next section on how to build conversational services that can respond to such messages.

21.14.11. Sender Inferred Subjects

It is possible for the sender to infer, to whatever conversational service it is calling, what subject it

would like the reply to go to. This is accomplished by utilizing the standard MessageParts.ReplyTo

message part. Using this methodology for building conversations is generally encouraged.

Consider the following client side code:

MessageBuilder.createMessage()

 .toSubject("ObjectService").signalling()

 .with(MessageParts.ReplyTo, "ClientEndpoint")

 .noErrorHandling().sendNowWith(dispatcher);

And the conversational code on the server (for service ObjectService):

MessageBuilder.createConversation(message)

 .subjectProvided().signalling()

 .with("Records", records)

 .noErrorHandling().reply();

In the above examples, assuming that the latter example is inside a service called "

ObjectService " and is referencing the incoming message that was sent in the former example,

the message created will automatically reference the ReplyTo subject that was provided by the

sender, and send the message back to the subject desired by the client on the client that sent

the message.

21.14.12. Broadcasting

Broadcasting messages to all clients listening on a specific subject is quite simple and involves

nothing more than forgoing use of the reply API. For instance:

MessageBuilder.createMessage().

 .toSubject("MessageListener")

 .with("Text", "Hello, from your overlords in the cloud")

Broadcasting

81

 .noErrorHandling().sendGlobalWith(dispatcher);

If sent from the server, all clients currently connected, who are listening to the subject

"MessageListener" will receive the message. It's as simple as that.

21.14.12.1. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs

on the server. Since a service advertised on the server is visible to all clients and all clients are

visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 21.14.13, “Message Routing Information”

21.14.12.2. Client-to-Client Communication

Communication from one client to another client is not directly possible within the bus federation,

by design. This isn't to say that it's not possible. But one client cannot see a service within the

federation of another client. We institute this limitation as a matter of basic security. But many

software engineers will likely find the prospects of such communication appealing, so this section

will provide some basic pointers on how to go about accomplishing it.

Relay ServicesThe essential architectural thing you'll need to do is create a relay service that runs

on the server. Since a service advertised on the server is visible to all clients and all clients are

visible to the server, you might already see where we're going with this.

By creating a service on the server which accepts messages from clients, you can create a simple

protocol on-top of the bus to enable quasi peer-to-peer communication. (We say quasi, because

it still needs to be routed through the server)

While you can probably imagine simply creating a broadcast-like service which accepts a message

from one client and broadcasts it to the rest of the world, it may be less clear how to go about

routing from one particular client to another particular client, so we'll focus on that problem. This

is covered in Section 21.14.13, “Message Routing Information”

Chapter 21. Errai Bus

82

21.14.13. Message Routing Information

Every message that is sent between a local and remote (or server and client) buses contain

session routing information. This information is used by the bus to determine what outbound

queues to use to deliver the message to, so they will reach their intended recipients. It is possible to

manually specify this information to indicate to the bus, where you want a specific message to go.

The utility class org.jboss.errai.bus.server.util.ServerBusUtils contains a utility method

for extracting the String-based SessionID which is used to identify the message queue associated

with any particular client. You may use this method to extract the SessionID from a message so

that you may use it for routing. For example:

...

 public void callback(Message message) {

 String sessionId = ServerBusUtils.getSessionId(message);

 // Record this sessionId somewhere.

 ...

 }

The SessionID can then be stored in a medium, say a Map, to cross-reference specific users or

whatever identifier you wish to allow one client to obtain a reference to the specific SessionID of

another client. In which case, you can then provide the SessionID as a MessagePart to indicate

to the bus where you want the message to go.

MessageBuilder.createMessage()

 .toSubject("ClientMessageListener")

 .signalling()

 .with(MessageParts.SessionID, sessionId)

 .with("Message", "We're relaying a message!")

 .noErrorHandling().sendNowWith(dispatcher);

By providing the SessionID part in the message, the bus will see this and use it for routing the

message to the relevant queue.

Now you're routing from client-to-client!

It may be tempting however, to try and include destination SessionID}}s at the client level,

assuming that this will make the infrastructure simpler. But this will not achieve

the desired results, as the bus treats {{SessionID}}s as transient. Meaning, the

{{SessionID information is not ever transmitted from bus-to-bus, and therefore is only directly

relevant to the proximate bus.

Handling Errors

83

21.15. Handling Errors

Asynchronous messaging necessitates the need for asynchronous error handling. Luckily, support

for handling errors is built directly into the MessageBuilder API, utilizing the ErrorCallback

interface. In the examples shown in previous exceptions, error-handing has been glossed over

with aubiquitous usage of the noErrorHandling() method while building messaging. We chose to

require the explicit use of such a method to remind developers of the fact that they are responsible

for their own error handling, requiring you to explicitly make the decision to forego handling

potential errors.

As a general rule, you should always handle your errors . It will lead to faster and quicker

identification of problems with your applications if you have error handlers, and generally help you

build more robust code.

MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 })

 .sendNowWith(dispatcher);

The addition of error-handling at first may put off developers as it makes code more verbose and

less-readable. This is nothing that some good practice can't fix. In fact, you may find cases where

the same error-handler can appropriately be shared between multiple different calls.

ErrorCallback error = new ErrorCallback() {

 public boolean error(Message message, Throwable throwable) {

 throwable.printStackTrace();

 return true;

 }

 }

 MessageBuilder.createMessage()

 .toSubject("HelloWorldService")

 .signalling()

 .with("msg", "Hi there!")

 .errorsHandledBy(error)

 .sendNowWith(dispatcher);

Chapter 21. Errai Bus

84

A little nicer.

The error handler requires that return a boolean value. This is to indicate whether or not Errai

should perform the defautl error handling actions it would normally take during a failure. You

will almost always want to return true here, unless you are trying to expicitly supress some

undesirably activity by Errai, such as automatic subject-termination in conversations. But this is

almost never the case.

21.16. Asynchronous Message Tasks

In some applications, it may be necessary or desirable to delay transmission of, or continually

stream data to a remote client or group of clients (or from a client to the server). In cases

like this, you can utilize the replyRepeating() , replyDelayed() , sendRepeating() and

sendDelayed() methods in the MessageBuilder .

Delayed TasksSending a task with a delay is straight forward. Simply utilize the appropriate

method (either replyDelayed() or sendDelayed()).

MessageBuilder.createConversation(msg)

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .replyDelayed(TimeUnit.SECONDS, 5); // sends the message after 5 seconds.

or

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .noErrorHandling()

 .sendDelayed(requestDispatcher, TimeUnit.SECONDS, 5); // sends the message

 after 5 seconds.

21.17. Repeating Tasks

A repeating task is sent using one of the MessageBuilder's {{repeatXXX()}}methods. The task will

repeat indefinitely until cancelled (see next section).

MessageBuilder.createMessage()

 .toSubject("FunSubject")

 .signalling()

 .withProvided("time", new ResourceProvider<String>() {

 SimpleDateFormat fmt = new SimpleDateFormat("hh:mm:ss");

Remote Procedure Calls (RPC)

85

 public String get() {

 return fmt.format(new Date(System.currentTimeMillis());

 }

 }

 .noErrorHandling()

 .sendRepeatingWith(requestDispatcher, TimeUnit.SECONDS, 1); //sends a message

 every 1 second

The above example sends a message very 1 second with a message part called{{"time"}},

containing a formatted time string. Note the use of the{{withProvided()}} method; a provided

message part is calculated at the time of transmission as opposed to when the message is

constructed.

Cancelling an Asynchronous TaskA delayed or repeating task can be cancelled by calling the

cancel()}}method of the {{AsyncTask instance which is returned when creating a task.

Reference to the AsyncTask object can be retained and cancelled by any other thread.

AsyncTask task = MessageBuilder.createConversation(message)

 .toSubject("TimeChannel").signalling()

 .withProvided(TimeServerParts.TimeString, new ResourceProvider<String>() {

 public String get() {

 return String.valueOf(System.currentTimeMillis());

 }

 }).defaultErrorHandling().replyRepeating(TimeUnit.MILLISECONDS, 100);

 ...

 // cancel the task and interrupt it's thread if necessary.

 task.cancel(true);

21.18. Remote Procedure Calls (RPC)

ErraiBus supports a high-level RPC layer to make typical client-server RPC communication easy

on top of the bus. While it is possible to use ErraiBus without ever using this API, you may find it

to be a more useful and concise approach to exposing services to the clients.

Please Note that this API has changed since version 1.0. RPC services provide a way of creating

type-safe mechanisms to make client-to-server calls. Currently, this mechanism only support

client-to-server calls, and not vice-versa.

Creating a service is straight forward. It requires the definition of a remote interface, and a service

class which implements it. See the following:

@Remote

 public interface MyRemoteService {

Chapter 21. Errai Bus

86

 public boolean isEveryoneHappy();

}

The @Remote annotation tells Errai that we'd like to use this interface as a remote interface. The

remote interface must be part of of the GWT client code. It cannot be part of the server-side code,

since the interface will need to be referenced from both the client and server side code. That said,

the implementation of a service is relatively to the point:

@Service

public class MyRemoteServiceImpl implements MyRemoteService {

 public boolean isEveryoneHappy() {

 // blatently lie and say everyone's happy.

 return true;

 }

}

That's all there is to it. You use the same @Service annotation as described in Section 2.4. The

presence of the remote interface tips Errai off as to what you want to do with the class.

Making callsCalling a remote service involves use of the MessageBuilder API. Since all messages

are asynchronous, the actual code for calling the remote service involves the use of a callback,

which we use to receive the response from the remote method. Let's see how it works:

MessageBuilder.createCall(new RemoteCallback<Boolean>() {

 public void callback(Boolean isHappy) {

 if (isHappy) Window.alert("Everyone is happy!");

 }

 }, MyRemoteService.class).isEveryoneHappy();

In the above example, we declare a remote callback that receives a Boolean, to correpond to the

return value of the method on the server. We also reference the remote interface we are calling,

and directly call the method. However, don't be tempted to write code like this :

boolean bool = MessageBuilder.createCall(...,

 MyRemoteService.class).isEveryoneHappy();

The above code will never return a valid result. In fact, it will always return null, false, or 0

depending on the type. This is due to the fact that the method is dispatched asynchronously, as

in, it does not wait for a server response before returning control. The reason we chose to do this,

as opposed to emulate the native GWT-approach, which requires the implementation of remote

and async interfaces, was purely a function of a tradeoff for simplicity.

Queue Sessions

87

21.19. Queue Sessions

The ErraiBus maintains it's own seperate session management on-top of the regular HTTP

session management. While the queue sessions are tied to, and dependant on HTTP sessions for

the most part (meaning they die when HTTP sessions die), they provide extra layers of session

tracking to make dealing with complex applications built on Errai easier.

21.19.1. Scopes

One of the things Errai offers is the concept of session and local scopes.

21.19.1.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

21.19.1.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

Chapter 21. Errai Bus

88

21.19.2. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity

thresholds. Clients are required to send heartbeat messages every once in a while to maintain

their sessions with the server. If a heartbeat message is not received after a certain period of time,

the session is terminated and any resources are deallocated.

21.19.3. Lifecycle

The lifescyle of a session is bound by the underlying HTTP session. It is also bound by activity

thresholds. Clients are required to send heartbeat messages every once in a while to maintain

their sessions with the server. If a heartbeat message is not received after a certain period of time,

the session is terminated and any resources are deallocated.

21.19.4. Scopes

One of the things Errai offers is the concept of session and local scopes.

21.19.4.1. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

21.19.4.2. Session Scopes

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

Serialization

89

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

21.19.4.3. Local Scope

A local scope is scoped to a single browser instance. But not to a single session.

In a browser a local scope would be confined to a tab or a window within a browser. You can store

parameters inside a local scope just like with a session by using the LocalContext helper class.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the local context by referencing the incoming message.

 LocalContext injectionContext = LocalContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

21.19.4.4. Session Scope

A session scope is scoped across all instances of the same session. When a session scope is

used, any parameters stored will be accessible and visible by all browser instances and tabs.

The SessionContext helper class is used for accessing the session scope.

public class TestService implements MessageCallback {

 public void callback(final Message message) {

 // obtain a reference to the session context by referencing the incoming

 message.

 SessionContext injectionContext = SessionContext.get(message);

 // set an attribute.

 injectionContext.setAttribute("MyAttribute", "Foo");

 }

}

21.20. Serialization

Serialization on the ErraiBus supports serialization within the same scope and limitations

as the default GWT RPC serialization rules. In order to expose your domain objects to

Chapter 21. Errai Bus

90

the bus so they can be exported across the bus, you must annotate them with the

org.jboss.errai.bus.server.annotations.ExposeEntity annotation. The presence of this

annotation will cause Errai's GWT compiler extensions to generate marshall/demarshall stubs for

the annotated objects at compile-time.

For example:

@ExposeEntity

public class User implements java.io.Serializable {

 private int userId;

 public int getUserId() {

 return userId;

 }

 public void setUserId(int userId) {

 this.userId = userId;

 }

 [...]

}

Note

All exposed entities must follow Java Bean convensions, and must be in the

classpath both at compile-time and at runtime. Compile-time access to the entities

is required since the creation of the marshalling/demarshalling proxies involves

code generation.

21.20.1. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if

the entities are located in a third-party library that you do not maintain. As such, you can explicitly

indicate in the configuration that you would like to have this entities made available by declaring

them in the ErraiApp.properties of any module.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

21.20.2. Serialization of external types

It may not be possible to annotate certain types you wish to expose to the bus for serialization if

the entities are located in a third-party library that you do not maintain. As such, you can explicitly

Wiring server side components

91

indicate in the configuration that you would like to have this entities made available by declaring

them in the ErraiApp.properties of any module.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

21.21. Wiring server side components

By default, ErraiBus uses Google Guice to wire components. However, we plan on standardizing

on JSR-330 Dependency Injection specification in the near future. When deploying services on the

server-side, it is currently possible to obtain references to the MessageBus , RequestDispatcher

, the ErraiServiceConfigurator , and ErraiService by declaring them as injection

dependencies in Service classes, extension components, and session providers.

21.22. Bus Configuration

This section contains information on configuring the server-side bus.

21.22.1. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate

servlet implementation if you wish to use true, asynchronous I/O. See _section 6.5 _ for information

on the available servlet implementations.

Here's a sample web.xml file:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 version="2.5">

 <servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

 </servlet-mapping>

Chapter 21. Errai Bus

92

 <context-param>

 <param-name>errai.properties</param-name>

 <param-value>/WEB-INF/errai.properties</param-value>

 </context-param>

 <context-param>

 <param-name>login.config</param-name>

 <param-value>/WEB-INF/login.config</param-value>

 </context-param>

 <context-param>

 <param-name>users.properties</param-name>

 <param-value>/WEB-INF/users.properties</param-value>

 </context-param>

</web-app>

21.22.2. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

##

Request dispatcher implementation (default is SimpleDispatcher)

##

#errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

errai.dispatcher_implementation=org.jboss.errai.bus.server.AsyncDispatcher

#

Worker pool size. This is the number of threads the asynchronous worker pool

 should provide for

processing

incoming messages. This option is only valid when using the AsyncDispatcher

 implementation.

##

errai.async.thread_pool_size=5

##

Worker timeout (in seconds). This defines the time that a single asychronous

 process may run,

before the worker pool

terminates it and reclaims the thread. This option is only valid when using

 the AsyncDispatcher

implementation.

##

errai.async.worker.timeout=5

ErraiService.properties

93

##

Specify the Authentication/Authorization Adapter to use

##

#errai.authentication_adapter=org.jboss.errai.persistence.server.security.HibernateAuthenticationAdapter

#errai.authentication_adapter=org.jboss.errai.bus.server.security.auth.JAASAdapter

##

This property indicates whether or not authentication is required for all

 communication with the

bus. Set this

to 'true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

21.22.2.1. errai.dispatcher.implementation

The errai.dispatcher_implementation defines, as it's name quite succinctly implies, the

dispatcher implementation to be used by the bus. There are two implementations which come

with Errai out of the box: the SimpleDispatcher and the AsyncDispatcher . See section on

Dispatchers for more information about the differences between the two.

21.22.2.2. errai.async_thread_pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering

messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

21.22.2.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming

message before the pool interrupts the thread and returns an error. Adjusting this value does not

have an effect if you are using the SimpleDispatcher.

21.22.2.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls

should be serviced based on authentication and security principles.

21.22.2.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests

inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any

user must be authenticated before the bus will deliver any messages from the client to any service.

21.22.2.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

Chapter 21. Errai Bus

94

21.22.2.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for

extensions.

21.22.3. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top

of any classpath, the subdirectories are scanned for deployable components. As such, all Errai

application modules in a project should contain an ErraiApp.properties at the root of all classpaths

that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)

that cannot be annotated for serialization. (See the section on serialization for more details)

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

21.22.4. ErraiApp.properties

The ErraiApp.properties acts as a marker file. When it is detected inside a JAR or at the top

of any classpath, the subdirectories are scanned for deployable components. As such, all Errai

application modules in a project should contain an ErraiApp.properties at the root of all classpaths

that you wish to be scanned.

The file can also include explicitly declared serializable types (such as those from third-party code)

that cannot be annotated for serialization. (See the section on serialization for more details)

errai.bus.serializableTypesDefines a list of serializable types to expose to the bus.

errai.bus.serializableTypes=org.foo.Foo \

 org.bar.Bar \

 org.foobie.Foobie

21.22.5. ErraiService.properties

he ErraiService.properties file contains basic configuration for the bus itself.

Example Configuration:

##

ErraiService.properties

95

Request dispatcher implementation (default is SimpleDispatcher)

##

#errai.dispatcher_implementation=org.jboss.errai.bus.server.SimpleDispatcher

errai.dispatcher_implementation=org.jboss.errai.bus.server.AsyncDispatcher

#

Worker pool size. This is the number of threads the asynchronous worker pool

 should provide for

processing

incoming messages. This option is only valid when using the AsyncDispatcher

 implementation.

##

errai.async.thread_pool_size=5

##

Worker timeout (in seconds). This defines the time that a single asychronous

 process may run,

before the worker pool

terminates it and reclaims the thread. This option is only valid when using

 the AsyncDispatcher

implementation.

##

errai.async.worker.timeout=5

##

Specify the Authentication/Authorization Adapter to use

##

#errai.authentication_adapter=org.jboss.errai.persistence.server.security.HibernateAuthenticationAdapter

#errai.authentication_adapter=org.jboss.errai.bus.server.security.auth.JAASAdapter

##

This property indicates whether or not authentication is required for all

 communication with the

bus. Set this

to 'true' if all access to your application should be secure.

##

#errai.require_authentication_for_all=true

21.22.5.1. errai.dispatcher.implementation

The errai.dispatcher_implementation defines, as it's name quite succinctly implies, the

dispatcher implementation to be used by the bus. There are two implementations which come

with Errai out of the box: the SimpleDispatcher and the AsyncDispatcher . See section on

Dispatchers for more information about the differences between the two.

Chapter 21. Errai Bus

96

21.22.5.2. errai.async_thread_pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering

messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

21.22.5.3. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming

message before the pool interrupts the thread and returns an error. Adjusting this value does not

have an effect if you are using the SimpleDispatcher.

21.22.5.4. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls

should be serviced based on authentication and security principles.

21.22.5.5. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests

inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any

user must be authenticated before the bus will deliver any messages from the client to any service.

21.22.5.6. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

21.22.5.7. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for

extensions.

21.22.5.8. errai.async_thread_pool_size

Specifies the total number of worker threads in the worker pool for handling and delivering

messages. Adjusting this value does not have any effect if you are using the SimpleDispatcher.

21.22.5.9. errai.async.worker_timeout

Specifies the total amount of a time (in seconds) a service has to finish processing an incoming

message before the pool interrupts the thread and returns an error. Adjusting this value does not

have an effect if you are using the SimpleDispatcher.

21.22.5.10. errai.authentication_adapter

Specifies the authentication modelAdapter the bus should use for determining whether calls

should be serviced based on authentication and security principles.

web.xml and appserver configuration

97

21.22.5.11. errai.auto_discover_services

A boolean indicating whether or not the Errai bootstrapper should automatically scan for services.

21.22.5.12. errai.auto_load_extensions

A boolean indicating whether or not the Errai bootstrapper should automatically scan for

extensions.

21.22.5.13. errai.dispatcher.implementation

The errai.dispatcher_implementation defines, as it's name quite succinctly implies, the

dispatcher implementation to be used by the bus. There are two implementations which come

with Errai out of the box: the SimpleDispatcher and the AsyncDispatcher . See section on

Dispatchers for more information about the differences between the two.

21.22.5.14. errai.require_authentication_for_all

Indicates whether or not the bus should always require the use of authentication for all requests

inbound for the bus. If this is turned on, an authentication model adapter must be defined, and any

user must be authenticated before the bus will deliver any messages from the client to any service.

21.22.6. web.xml and appserver configuration

Depending on what application server you are deploying on, you must provide an appropriate

servlet implementation if you wish to use true, asynchronous I/O. See _section 6.5 _ for information

on the available servlet implementations.

Here's a sample web.xml file:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 version="2.5">

 <servlet>

 <servlet-name>ErraiServlet</servlet-name>

 <servlet-class>org.jboss.errai.bus.server.servlet.DefaultBlockingServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>ErraiServlet</servlet-name>

 <url-pattern>*.erraiBus</url-pattern>

 </servlet-mapping>

 <context-param>

Chapter 21. Errai Bus

98

 <param-name>errai.properties</param-name>

 <param-value>/WEB-INF/errai.properties</param-value>

 </context-param>

 <context-param>

 <param-name>login.config</param-name>

 <param-value>/WEB-INF/login.config</param-value>

 </context-param>

 <context-param>

 <param-name>users.properties</param-name>

 <param-value>/WEB-INF/users.properties</param-value>

 </context-param>

</web-app>

21.23. Dispatchers

Dispatchers encapsulate the strategy for taking messages that need to be delivered somewhere

and seeing that they are delivered to where they need to go. There are two primary

implementations that are provided with Errai, depending on your needs.

21.23.1. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.

Rather, when you configure the Errai to use this implementation, messages are delivered to their

endpoints synchronously. The incoming HTTP thread will be held open until the messages are

delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the

SimpleDispatcher can be far preferable when you're developing your application, as any errors

and stack traces will be far more easily traced and some cloud services may not permit the use

of threads in any case.

21.23.2. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher

is used, HTTP threads will have control immediately returned upon dispatch of the message.

This dispatcher provides far more efficient use of resources in high-load applications, and will

significantly decrease memory and thread usage overall.

21.23.3. AsyncDispatcher

The AsyncDispatcher provides full asynchronous delivery of messages. When this dispatcher

is used, HTTP threads will have control immediately returned upon dispatch of the message.

This dispatcher provides far more efficient use of resources in high-load applications, and will

significantly decrease memory and thread usage overall.

SimpleDispatcher

99

21.23.4. SimpleDispatcher

SimpleDispatcher is basic implementation that provides no asychronous delivery mechanism.

Rather, when you configure the Errai to use this implementation, messages are delivered to their

endpoints synchronously. The incoming HTTP thread will be held open until the messages are

delivered.

While this sounds like it has almost no advantages, especially in terms of scalablity. Using the

SimpleDispatcher can be far preferable when you're developing your application, as any errors

and stack traces will be far more easily traced and some cloud services may not permit the use

of threads in any case.

21.24. Servlet Implementations

Errai has several different implementations for HTTP traffic to and from the bus. We provide a

universally-compatible blocking implementation that provides fully synchronous communication

to/from the server-side bus. Where this introduces scalability problems, we have implemented

many webserver-specific implementations that take advantage of the various proprietary APIs to

provide true asynchrony.

These inlcuded implementations are packaged at: org.jboss.errai.bus.server.servlet

21.24.1. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides

purely synchronous request handling and should work in virtually any servlet container, unless

there are restrictions on putting threads into sleep states.

21.24.2. TomcatCometServlet

The Tomcat AIO implementation of our servlet allows Errai to take advantage of Tomcat's event-

based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is

dependant on the Tomcat container being configured to support AIO using either it's NIO or APR

connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

21.24.3. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless

pausing of port connections. This servlet implementation should work without any special

configuration of Jetty.

21.24.4. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve

scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use

of this implementation requires use of the APR (Apache Portable Runtime).

Chapter 21. Errai Bus

100

21.24.5. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

21.24.6. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

21.24.7. DefaultBlockingServlet

This is a universal, completely servlet spec (2.0) compliant, Servlet implementation. It provides

purely synchronous request handling and should work in virtually any servlet container, unless

there are restrictions on putting threads into sleep states.

21.24.8. GrizzlyCometServlet

Support for the comet API in the Grizzy HTTP server (used in Glassfish).

21.24.9. JBossCometServlet

The JBoss Comet support utilizes the JBoss Web AIO APIs (AS 5.0 and AS 6.0) to improve

scalability and reduce thread usage. The HTTP, NIO, and AJP connectors are not supported. Use

of this implementation requires use of the APR (Apache Portable Runtime).

21.24.10. JettyContinuationsServlet

The Jetty implementation leverages Jetty's continuations support, which allows for threadless

pausing of port connections. This servlet implementation should work without any special

configuration of Jetty.

21.24.11. TomcatCometServlet

The Tomcat AIO implementation of our servlet allows Errai to take advantage of Tomcat's event-

based AIO APIs to improve scalability and reduce thread usage. The use of this implementation is

dependant on the Tomcat container being configured to support AIO using either it's NIO or APR

connectors. This servlet will NOT work with the regular HTTP and AJP connectors.

21.24.12. WeblogicAsyncServlet

Support for the Weblogic asynchronous APIs.

21.25. Debugging Errai Applications

Errai includes a bus monitoring application, which allows you to monitor all of the message

exchange activity on the bus in order to help track down any potential problems It allows you to

inspect individual messages to examine their state and structure.

Debugging Errai Applications

101

To utilize the bus monitor, you'll need to include the _errai-tools _ package as part of your

application's dependencies. When you run your application in development mode, you will simply

need to add the following JVM options to your run configuration in order to launch the monitor: -

Derrai.tools.bus_monitor_attach=true

Figure 21.3. TODO InformalFigure image title empty

The monitor provides you a real-time perspective on what's going on inside the bus. The left side

of the main screen lists the services that are currently available, and the right side is the service-

explorer, which will show details about the service.

To see what's going on with a specific service, simply double-click on the service or highlight the

service, then click "Monitor Service...". This will bring up the service activity monitor.

Figure 21.4. TODO InformalFigure image title empty

The service activity monitor will display a list of all the messages that were transmitted on the bus

since the monitor became active. You do not need to actually have each specific monitor window

open in order to actively monitor the bus activity. All activity on the bus is recorded.

The monitor allows you select individual messages, an view their individual parts. Clicking on a

message part will bring up the object inspector, which will allow you to explore the state of any

objects contained within the message, not unlike the object inspectors provided by debuggers in

your favorite IDE. This can be a powerful tool for looking under the covers of your application.

102

Chapter 22.

103

Development Proxy
Proxied access to external containersUsually GWT developement happens in hosted mode and

then, later on, the GWT app is turned into a webapp (*.war) that can be deployed on a target

container (app server, servlet engine). This works quiet well for closed systems that don't depend

on additional resources the target container provides. A typical resource would be a DataSource

for access to a relational database.

Instead of pulling these resources into the hosted mode servlet engine (jetty, read-only JNDI) or

creating mock objects for any resources that cannot be run in hosted mode, we offer you a much

more simple way to work with external resources: Simply proxy all requests that occur in hosted

mode to an external target container:

Figure 22.1. Development Proxy

The proxy is implemented a yet another servlet that you need to add to the web.xml that's being

sed in hosted mode:

<servlet>

 <servlet-name>erraiProxy</servlet-name>

 <description>Errai Proxy</description>

 <servlet-class>org.jboss.errai.tools.proxy.XmlHttpProxyServlet</

servlet-class>

 <init-param>

 <param-name>config.name</param-name>

 <param-value>errai-proxy.json</param-value> (1)

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>erraiProxy</servlet-name>

 <url-pattern>/app/proxy/*</url-pattern> (2)

 </servlet-mapping>

1. Proxy configuration. See details below.

2. The proxy url pattern convetion. The bus bootstraps on this URL.

The web.xml proxy declaration contains two notable elements: A reference to the proxy

configuration file and a URL pattern, where the proxy can found. While the later shouldn't be

changed (the bus bootstraps on this URL), you need to change the proxy config according to your

needs:

Chapter 22. Development Proxy

104

{"xhp": {

 "version": "1.1",

 "services": [

 {"id": "default",

 "url":"http://127.0.0.1:8080/my-gwt-app/in.erraiBus",

 "passthrough":true

 },

]

 }

 }

You would need to _change the host, port and webcontext _ ('my-gwt-app' in this case) to reflect

the location of the external container. 'passthrough' simply means that any request to 'proxy/

in.erraiBus' will go to 'container/my-gwt-app/in.erraiBus'. This already indicates that you need to

have the server side part of your GWT application, already running on the target container. The

most simple way to achieve this, is to build a the complete webapp, deploy it and ignore the UI

parts that may be available on the server.

Chapter 23.

105

Errai IOC
The Errai IOC (Inversion-of-Control) module is a central feature of the Errai Framework, providing

client-side service location, component lifecycle, and injection services. The framework is a

modular and extensible system for building reusable client-side components.

23.1. Dependency Injection

The core Errai IOC module implements a subset of the JSR-330 Dependency Injection [http://

download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for

in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the

implementation of decoupled and type-safe components. By using DI, components do not need

to be aware of the implementation of provided services. Instead, they merely declare a contract

with the container, which in turn provides instances of the services that component depends on.

A simple example:

public class MyLittleClass {

 private final TimeService timeService;

 @Inject

 public MyLittleClass(TimeService timeService) {

 this.timeService = timeService;

 }

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

In this example, we create a simple class which declares a dependency using

@Inject [http://download.oracle.com/javaee/6/api/javax/inject/Inject.html] for

the interface TimeService . In this particular case, we use constructor injection to establish the

contract between the container and the component. We can similarly use field injection to the

same effect:

public class MyLittleClass {

 @Inject

 private TimeService timeService;

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 23. Errai IOC

106

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot

create immutable classes using the pattern, since the container must first call the

default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential – albeit remote – that the object could be left in an partially or

improperly initialized state. The advantage of constructor injection is that fields can

be immutable (final), and invariance rules applied at construction time, leading to

earlier failures, and the guarantee of consistent state.

@Inject [http://download.oracle.com/javaee/6/api/javax/inject/Inject.html]

23.2. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide

a programmatic way of creating and configuring injectors. Instead, container-level binding rules are

defined by implementing a Provider [http://download.oracle.com/javaee/6/api/javax/

inject/Provider.html] , which is scanned for an auto-discovered by the container.

23.2.1. level Providers

A Provider is essentially a factory which produces dependent types in the container, which

defers instantiation responsibility for the provided type to the provider implementation. Top-level

providers use the standard javax.inject.Provider<T> interface.

Types made available as top-level providers will be available for injection in any managed

component within the container.

Out of the box, Errai IOC implements three default top-level providers:

• org.jboss.errai.ioc.client.api.builtin.MessageBusProvider : Makes an instance of

MessageBus available for injection.

• org.jboss.errai.ioc.client.api.builtin.RequestDispatchProvider : Makes an

instance of the RequestDispatcher available for injection.

• org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event

Consumer<?> objects available for injection.

Implementing a Provider is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface TimeService {

http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Container Wiring

107

 public String getTime();

}

TimeServiceProvider.java

@IOCProvider

@Singleton

public class TimeServiceProvider implements Provider<TimeService> {

 @Override

 public TimeService get() {

 return new TimeService() {

 public String getTime() {

 return "It's midnight somewhere!";

 }

 };

 }

}

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Guice.createInjector(new AbstractModule() {

 public void configure() {

 bind(TimeService.class).toProvider(TimeServiceProvider.class);

 }

 }).getInstance(MyApp.class);

As shown in the above example code, the annotation @IOCProvider is used to denote top-level

providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject

dependencies – particularly from other top-level providers – as necessary.

23.3. Container Wiring

In contrast to Gin [http://code.google.com/p/google-gin/] , the Errai IOC container does not provide

a programmatic way of creating and configuring injectors. Instead, container-level binding rules are

defined by implementing a Provider [http://download.oracle.com/javaee/6/api/javax/

inject/Provider.html] , which is scanned for an auto-discovered by the container.

http://code.google.com/p/google-gin/
http://code.google.com/p/google-gin/
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html
http://download.oracle.com/javaee/6/api/javax/inject/Provider.html

Chapter 23. Errai IOC

108

23.3.1. level Providers

A Provider is essentially a factory which produces dependent types in the container, which

defers instantiation responsibility for the provided type to the provider implementation. Top-level

providers use the standard javax.inject.Provider<T> interface.

Types made available as top-level providers will be available for injection in any managed

component within the container.

Out of the box, Errai IOC implements three default top-level providers:

• org.jboss.errai.ioc.client.api.builtin.MessageBusProvider : Makes an instance of

MessageBus available for injection.

• org.jboss.errai.ioc.client.api.builtin.RequestDispatchProvider : Makes an

instance of the RequestDispatcher available for injection.

• org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event

Consumer<?> objects available for injection.

Implementing a Provider is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface TimeService {

 public String getTime();

}

TimeServiceProvider.java

@IOCProvider

@Singleton

public class TimeServiceProvider implements Provider<TimeService> {

 @Override

 public TimeService get() {

 return new TimeService() {

 public String getTime() {

 return "It's midnight somewhere!";

 }

 };

 }

}

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

level Providers

109

Guice.createInjector(new AbstractModule() {

 public void configure() {

 bind(TimeService.class).toProvider(TimeServiceProvider.class);

 }

 }).getInstance(MyApp.class);

As shown in the above example code, the annotation @IOCProvider is used to denote top-level

providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject

dependencies – particularly from other top-level providers – as necessary.

23.3.2. level Providers

A Provider is essentially a factory which produces dependent types in the container, which

defers instantiation responsibility for the provided type to the provider implementation. Top-level

providers use the standard javax.inject.Provider<T> interface.

Types made available as top-level providers will be available for injection in any managed

component within the container.

Out of the box, Errai IOC implements three default top-level providers:

• org.jboss.errai.ioc.client.api.builtin.MessageBusProvider : Makes an instance of

MessageBus available for injection.

• org.jboss.errai.ioc.client.api.builtin.RequestDispatchProvider : Makes an

instance of the RequestDispatcher available for injection.

• org.jboss.errai.ioc.client.api.builtin.ConsumerProvider : Makes event

Consumer<?> objects available for injection.

Implementing a Provider is relatively straight-forward. Consider the following two classes:

TimeService.java

public interface TimeService {

 public String getTime();

}

Chapter 23. Errai IOC

110

TimeServiceProvider.java

@IOCProvider

@Singleton

public class TimeServiceProvider implements Provider<TimeService> {

 @Override

 public TimeService get() {

 return new TimeService() {

 public String getTime() {

 return "It's midnight somewhere!";

 }

 };

 }

}

If you are familiar with Guice, this is semantically identical to configuring an injector like so:

Guice.createInjector(new AbstractModule() {

 public void configure() {

 bind(TimeService.class).toProvider(TimeServiceProvider.class);

 }

 }).getInstance(MyApp.class);

As shown in the above example code, the annotation @IOCProvider is used to denote top-level

providers.

The classpath will be searched for all annotated providers at compile time.

Important

Top-level providers are treated as regular beans. And as such may inject

dependencies – particularly from other top-level providers – as necessary.

23.4. Dependency Injection

The core Errai IOC module implements a subset of the JSR-330 Dependency Injection [http://

download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/] specification for

in-client component wiring.

Dependency injection (DI) allows for cleaner and more modular code, by permitting the

implementation of decoupled and type-safe components. By using DI, components do not need

to be aware of the implementation of provided services. Instead, they merely declare a contract

with the container, which in turn provides instances of the services that component depends on.

http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/
http://download.oracle.com/otndocs/jcp/dependency_injection-1.0-final-oth-JSpec/

Dependency Injection

111

A simple example:

public class MyLittleClass {

 private final TimeService timeService;

 @Inject

 public MyLittleClass(TimeService timeService) {

 this.timeService = timeService;

 }

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

In this example, we create a simple class which declares a dependency using

@Inject [http://download.oracle.com/javaee/6/api/javax/inject/Inject.html] for

the interface TimeService . In this particular case, we use constructor injection to establish the

contract between the container and the component. We can similarly use field injection to the

same effect:

public class MyLittleClass {

 @Inject

 private TimeService timeService;

 public void printTime() {

 System.out.println(this.timeService.getTime());

 }

}

Best Practices

Although field injection results in less code, a major disadvantage is that you cannot

create immutable classes using the pattern, since the container must first call the

default, no argument constructor, and then iterate through its injection tasks, which

leaves the potential – albeit remote – that the object could be left in an partially or

improperly initialized state. The advantage of constructor injection is that fields can

be immutable (final), and invariance rules applied at construction time, leading to

earlier failures, and the guarantee of consistent state.

@Inject [http://download.oracle.com/javaee/6/api/javax/inject/Inject.html]

http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html
http://download.oracle.com/javaee/6/api/javax/inject/Inject.html

112

Chapter 24.

113

Reporting problems
If you run into trouble don't hesitate to get in touch with us:

• JIRA Issue Tracking: https://jira.jboss.org/jira/browse/ERRAI

• User Forum: http://community.jboss.org/en/errai?view=discussions

• Mailing List: http://jboss.org/errai/MailingLists.html

• IRC: irc://irc.freenode.net/errai

https://jira.jboss.org/jira/browse/ERRAI
http://community.jboss.org/en/errai?view=discussions
http://jboss.org/errai/MailingLists.html
irc://irc.freenode.net/errai

114

115

Appendix A. Revision History
Revision History

Revision ToDo 0-0 ToDo Wed Jan 19 2011 ToDo DudeToDo

McPants<ToDo Dude.McPants@example.com>

ToDo Initial creation of book

116

	Reference Guide
	Table of Contents
	Preface
	1. Document Conventions
	2. Feedback

	Chapter 1. Introduction
	1.1. What is it?
	1.2. Installation
	1.2.1. Required software

	Chapter 2. Messaging
	2.1. Messaging Overview
	2.2. MessageBuilder API
	2.3. Single-Response Conversations & Psuedo-Synchronous Messaging
	2.4. Sender Inferred Subjects
	2.5. Broadcasting
	2.6. Client-to-Client Communication
	2.7. Message Routing Information

	Chapter 3. Handling Errors
	Chapter 4. Asynchronous Message Tasks
	Chapter 5. Repeating Tasks
	Chapter 6. Remote Procedure Calls (RPC)
	Chapter 7. Queue Sessions
	7.1. Scopes
	7.1.1. Local Scope
	7.1.2. Session Scopes

	7.2. Lifecycle

	Chapter 8. Serialization
	8.1. Serialization of external types

	Chapter 9. Wiring server side components
	Chapter 10. Bus Configuration
	10.1. web.xml and appserver configuration
	10.2. ErraiService.properties
	10.2.1. errai.dispatcher.implementation
	10.2.2. errai.async_thread_pool_size
	10.2.3. errai.async.worker_timeout
	10.2.4. errai.authentication_adapter
	10.2.5. errai.require_authentication_for_all
	10.2.6. errai.auto_discover_services
	10.2.7. errai.auto_load_extensions

	10.3. ErraiApp.properties

	Chapter 11. Dispatchers
	11.1. SimpleDispatcher
	11.2. AsyncDispatcher

	Chapter 12. Servlet Implementations
	12.1. DefaultBlockingServlet
	12.2. TomcatCometServlet
	12.3. JettyContinuationsServlet
	12.4. JBossCometServlet
	12.5. GrizzlyCometServlet
	12.6. WeblogicAsyncServlet

	Chapter 13. Debugging Errai Applications
	Chapter 14. Downloads
	Chapter 15. Sources
	Chapter 16. License and EULA
	Chapter 17. Introduction
	17.1. What is it
	17.2. Installation
	17.2.1. Required software

	Chapter 18. License and EULA
	Chapter 19. Downloads
	Chapter 20. Sources
	Chapter 21. Errai Bus
	21.1. Messaging
	21.1.1. Messaging Overview
	21.1.2. MessageBuilder API
	21.1.3. Single-Response Conversations & Psuedo-Synchronous Messaging
	21.1.4. Sender Inferred Subjects
	21.1.5. Broadcasting
	21.1.6. Client-to-Client Communication
	21.1.7. Message Routing Information

	21.2. Handling Errors
	21.3. Asynchronous Message Tasks
	21.4. Repeating Tasks
	21.5. Remote Procedure Calls (RPC)
	21.6. Queue Sessions
	21.6.1. Scopes
	21.6.1.1. Local Scope
	21.6.1.2. Session Scopes

	21.6.2. Lifecycle

	21.7. Serialization
	21.7.1. Serialization of external types

	21.8. Wiring server side components
	21.9. Bus Configuration
	21.9.1. web.xml and appserver configuration
	21.9.2. ErraiService.properties
	21.9.2.1. errai.dispatcher.implementation
	21.9.2.2. errai.async_thread_pool_size
	21.9.2.3. errai.async.worker_timeout
	21.9.2.4. errai.authentication_adapter
	21.9.2.5. errai.require_authentication_for_all
	21.9.2.6. errai.auto_discover_services
	21.9.2.7. errai.auto_load_extensions

	21.9.3. ErraiApp.properties

	21.10. Dispatchers
	21.10.1. SimpleDispatcher
	21.10.2. AsyncDispatcher

	21.11. Servlet Implementations
	21.11.1. DefaultBlockingServlet
	21.11.2. TomcatCometServlet
	21.11.3. JettyContinuationsServlet
	21.11.4. JBossCometServlet
	21.11.5. GrizzlyCometServlet
	21.11.6. WeblogicAsyncServlet

	21.12. Debugging Errai Applications
	21.13. What is Errai Bus?
	21.14. Messaging
	21.14.1. Messaging Overview
	21.14.2. MessageBuilder API
	21.14.3. Single-Response Conversations & Psuedo-Synchronous Messaging
	21.14.4. Sender Inferred Subjects
	21.14.5. Broadcasting
	21.14.6. Client-to-Client Communication
	21.14.7. Message Routing Information
	21.14.8. Messaging Overview
	21.14.9. MessageBuilder API
	21.14.10. Single-Response Conversations & Psuedo-Synchronous Messaging
	21.14.11. Sender Inferred Subjects
	21.14.12. Broadcasting
	21.14.12.1. Client-to-Client Communication
	21.14.12.2. Client-to-Client Communication

	21.14.13. Message Routing Information

	21.15. Handling Errors
	21.16. Asynchronous Message Tasks
	21.17. Repeating Tasks
	21.18. Remote Procedure Calls (RPC)
	21.19. Queue Sessions
	21.19.1. Scopes
	21.19.1.1. Local Scope
	21.19.1.2. Session Scopes

	21.19.2. Lifecycle
	21.19.3. Lifecycle
	21.19.4. Scopes
	21.19.4.1. Local Scope
	21.19.4.2. Session Scopes
	21.19.4.3. Local Scope
	21.19.4.4. Session Scope

	21.20. Serialization
	21.20.1. Serialization of external types
	21.20.2. Serialization of external types

	21.21. Wiring server side components
	21.22. Bus Configuration
	21.22.1. web.xml and appserver configuration
	21.22.2. ErraiService.properties
	21.22.2.1. errai.dispatcher.implementation
	21.22.2.2. errai.async_thread_pool_size
	21.22.2.3. errai.async.worker_timeout
	21.22.2.4. errai.authentication_adapter
	21.22.2.5. errai.require_authentication_for_all
	21.22.2.6. errai.auto_discover_services
	21.22.2.7. errai.auto_load_extensions

	21.22.3. ErraiApp.properties
	21.22.4. ErraiApp.properties
	21.22.5. ErraiService.properties
	21.22.5.1. errai.dispatcher.implementation
	21.22.5.2. errai.async_thread_pool_size
	21.22.5.3. errai.async.worker_timeout
	21.22.5.4. errai.authentication_adapter
	21.22.5.5. errai.require_authentication_for_all
	21.22.5.6. errai.auto_discover_services
	21.22.5.7. errai.auto_load_extensions
	21.22.5.8. errai.async_thread_pool_size
	21.22.5.9. errai.async.worker_timeout
	21.22.5.10. errai.authentication_adapter
	21.22.5.11. errai.auto_discover_services
	21.22.5.12. errai.auto_load_extensions
	21.22.5.13. errai.dispatcher.implementation
	21.22.5.14. errai.require_authentication_for_all

	21.22.6. web.xml and appserver configuration

	21.23. Dispatchers
	21.23.1. SimpleDispatcher
	21.23.2. AsyncDispatcher
	21.23.3. AsyncDispatcher
	21.23.4. SimpleDispatcher

	21.24. Servlet Implementations
	21.24.1. DefaultBlockingServlet
	21.24.2. TomcatCometServlet
	21.24.3. JettyContinuationsServlet
	21.24.4. JBossCometServlet
	21.24.5. GrizzlyCometServlet
	21.24.6. WeblogicAsyncServlet
	21.24.7. DefaultBlockingServlet
	21.24.8. GrizzlyCometServlet
	21.24.9. JBossCometServlet
	21.24.10. JettyContinuationsServlet
	21.24.11. TomcatCometServlet
	21.24.12. WeblogicAsyncServlet

	21.25. Debugging Errai Applications

	Chapter 22. Development Proxy
	Chapter 23. Errai IOC
	23.1. Dependency Injection
	23.2. Container Wiring
	23.2.1. level Providers

	23.3. Container Wiring
	23.3.1. level Providers
	23.3.2. level Providers

	23.4. Dependency Injection

	Chapter 24. Reporting problems
	Appendix A. Revision History

