
Using OptaWeb Vehicle Routing
The OptaPlanner Team

Version 8.0.0.Final

Table of Contents
1. Introduction. 2

1.1. What is OptaWeb Vehicle Routing? . 2

2. Quickstart . 3

2.1. Install Java 11 or higher . 3

2.2. Download distribution archive . 3

2.3. Run OptaWeb Vehicle Routing. 4

3. Run locally using the script . 6

3.1. Quickstart mode . 6

3.2. Interactive mode. 6

3.2.1. Download a new region using the script. 7

3.2.2. Select a region and run OptaWeb Vehicle Routing . 7

3.3. Non-interactive mode . 7

3.4. Air distance mode. 7

3.5. Tweak the data directory . 8

4. Run locally without the script . 9

4.1. Download routing data . 9

4.2. Create data directory structure . 9

4.3. Run using the java command . 10

5. Run on OpenShift . 11

5.1. Running on a local OpenShift cluster . 11

5.1.1. Updating the deployed application with local changes . 11

6. Using OptaWeb Vehicle Routing . 13

6.1. Creating a route . 13

6.2. Viewing and setting other details . 13

6.3. Creating custom data sets . 14

6.4. Troubleshooting . 14

7. Development guide . 15

7.1. Project structure . 15

7.2. Developing OptaWeb Vehicle Routing . 15

7.3. Back end . 15

7.3.1. Running the back end using Spring Boot Maven plugin . 16

7.3.2. Automatic restart . 16

7.3.3. Running the back end from IntelliJ IDEA . 16

7.3.4. Configuration . 17

7.3.5. Logging . 18

7.4. Front end . 18

7.4.1. Setting up the development environment . 18

7.4.2. Install npm dependencies. 18

7.4.3. Running the development server . 19

7.4.4. Running tests . 19

7.4.5. Changing the back end location . 19

7.5. Building the project . 20

8. Contributing to OptaWeb Vehicle Routing . 21

8.1. Formatting OptaWeb Vehicle Routing source code using Maven . 21

8.2. Formatting OptaWeb Vehicle Routing source code using an IDE . 21

8.2.1. Eclipse IDE setup. 21

8.2.2. IntelliJ IDEA setup. 22

Appendix A: Back end architecture . 23

A.1. Code organization . 23

A.2. Dependency rules . 24

A.3. The domain package . 24

A.4. The service package . 25

A.5. The plugin package . 25

Appendix B: Back end configuration properties. 26

As a developer, you can use OptaWeb Vehicle Routing to optimize your vehicle fleet deliveries. In
this guide, you will create and run a sample OptaWeb Vehicle Routing application.

1

Chapter 1. Introduction

1.1. What is OptaWeb Vehicle Routing?
The main purpose of many types of businesses is to transport various types of cargo. The goal of
these businesses is to deliver a piece of cargo from the loading point to a destination and use its
vehicle fleet in the most efficient way. This type of optimization problem is referred to as the
vehicle routing problem (VRP) and has many variations.

OptaPlanner can solve many of these vehicle routing variations and provides solution examples.
OptaPlanner enables developers to focus on modeling business rules and requirements instead of
learning constraint programming theory. OptaWeb Vehicle Routing expands OptaPlanner’s vehicle
routing capabilities by providing a reference implementation that answers questions such as these:

• Where do I get the distances and travel times?

• How do I visualize the solution on a map?

• How do I build an application that runs in the cloud?

2

https://www.optaplanner.org/learn/useCases/vehicleRoutingProblem.html
https://www.optaplanner.org/
https://en.wikipedia.org/wiki/Constraint_programming

Chapter 2. Quickstart
You can get up and running with OptaWeb Vehicle Routing in just a few steps. In this chapter you
will download the OptaWeb Vehicle Routing distribution archive containing a binary build of
OptaWeb Vehicle Routing. You will use a Bash script to run the binary without having to build the
project.

2.1. Install Java 11 or higher
Java SE 11 or higher must be installed on your system before you can use OptaWeb Vehicle
Routing.

It is recommended that you install Java SE Development Kit (JDK) because it is
necessary in order to build OptaWeb Vehicle Routing from the source. However, if
you have a binary distribution of OptaWeb Vehicle Routing, you only need the Java
SE Runtime Environment (JRE).

Procedure

1. To verify the current Java installation, enter the following command:

java -version

2. If necessary, install OpenJDK 11.

◦ To install OpenJDK 11 on Fedora, enter the following command:

sudo dnf install java-11-openjdk-devel

◦ To install OpenJDK on other platforms, follow instructions at https://openjdk.java.net/install/.

2.2. Download distribution archive
Download the OptaWeb Vehicle Routing distribution archive, available from the OptaPlanner
website, to quickly evaluate OptaWeb Vehicle Routing without having to set up build tools.

If you want to modify OptaWeb Vehicle Routing and build it yourself or contribute
to upstream, see Development guide.

Procedure

1. Go to https://www.optaplanner.org/download/download.html and click the OptaWeb Vehicle
Routing tab.

2. Click Download OptaWeb Vehicle Routing 8.0.0.Final.

3

https://openjdk.java.net/install/
https://www.optaplanner.org/download/download.html

Figure 1. OptaPlanner download page

3. Extract the downloaded distribution ZIP file. The archive contains source files and a binary
build of OptaWeb Vehicle Routing as well as the OptaWeb Vehicle Routing documentation.

Figure 2. Content of the OptaWeb Vehicle Routing distribution archive

2.3. Run OptaWeb Vehicle Routing
After you download OptaWeb Vehicle Routing and extract the distribution archive, use the
runLocally.sh script to run it.

If the standalone JAR is not part of the distribution, build the project from source
by using the sources directory. You can use the sources directory inside the
distribution as if you have cloned the source repository from GitHub.

 If Bash is not available on your system, continue to Run locally without the script.

4

Prerequisites

• Internet access is available. When OptaWeb Vehicle Routing runs it uses third-party public
services such as OpenStreetMap to display map tiles and provide search results.

• Java 11 or higher is installed.

• OptaWeb Vehicle Routing distribution archive is downloaded and extracted.

Procedure

Enter the following command:

./bin/runLocally.sh

The script will download an OSM file that is needed to work with the sample data set that is
included with the application. The script also has an interactive mode you can use to download
additional regions. See Run locally using the script to learn more about the script.

5

https://www.openstreetmap.org/about

Chapter 3. Run locally using the script
Linux and macOS users can use a Bash script called runLocally.sh to run OptaWeb Vehicle Routing.
The script automates some setup steps that would otherwise have to be carried out manually. The
script will:

• Create the data directory.

• Download selected OSM files from Geofabrik.

• Try to associate a country code with each downloaded OSM file automatically.

• Build the project if the standalone JAR file does not exist.

• Launch OptaWeb Vehicle Routing by taking a single region argument or by selecting the region
interactively.

3.1. Quickstart mode
In quickstart mode, the script downloads the region that is required to work with the built-in data
set. This is the easiest way to get started. To use the quickstart mode, run the script with no
arguments.

Prerequisites

• optaweb-vehicle-routing repository is cloned on your computer.

• Internet access is available.

• Java 11 or higher is installed.

Procedure

1. Change directory to the project root.

2. Run ./runLocally.sh.

3. Confirm the download of the OSM file needed to work with the built-in data set.

The application starts after the OSM file is downloaded. Open http://localhost:8080 in a web
browser to work with OptaWeb Vehicle Routing.

The first start may take a few minutes because the OSM file needs to be imported
by GraphHopper and stored as a road network graph. Subsequent runs will load
the graph from the file system without importing the OSM file and will be
significantly faster.

3.2. Interactive mode
Using the interactive mode, you can see the list of downloaded OSM files and country codes
assigned to each region. You can use the interactive mode to download additional OSM files from
Geofabrik without visiting the website and choosing a destination for the download.

6

http://localhost:8080

3.2.1. Download a new region using the script

Procedure

1. Run ./runLocally.sh -i.

2. Enter d to show the download menu.

3. Go to a region by entering its ID and then entering e.

4. Repeat the previous step until you see a list with the region you want to download.

5. Download a region by entering its ID and then entering d.

Using large OSM files

For the best user experience, use smaller regions such as individual European or
US states. Using OSM files larger than 1 GB will require significant RAM size and
take a lot of time (up to several hours) for the initial processing.

3.2.2. Select a region and run OptaWeb Vehicle Routing

Procedure

1. Run ./runLocally.sh -i.

2. Select a region from the list of downloaded regions by entering its ID.

3. Confirm the project build if it hasn’t been built yet.

4. Confirm starting OptaWeb Vehicle Routing using the selected region.

3.3. Non-interactive mode
Use the non-interactive mode to specify an existing region and start OptaWeb Vehicle Routing with
a single command. This is useful for switching between regions quickly or when doing a demo.

Procedure

Run ./runLocally.sh <REGION>.

3.4. Air distance mode
OptaWeb Vehicle Routing can work in air distance mode that calculates travel times based on the
distance between two coordinates. Use this mode in situations where you need to get OptaWeb
Vehicle Routing up and running as quickly as possible and do not want to use an OSM
(OpenStreetMap) file. Air distance mode is only useful if you need to smoke-test OptaWeb Vehicle
Routing and you do not need accurate travel times.

Procedure

Run the runLocally.sh script with --air argument to start OptaWeb Vehicle Routing in air distance
mode:

./bin/run.sh --air

7

3.5. Tweak the data directory
• To use a different data directory, write its absolute path to the .DATA_DIR_LAST file at the project

root.

• To change country codes associated with a region, edit the corresponding file under
DATA_DIR/country_codes/.

For example, you could have downloaded an OSM file for Scotland, for which the script fails to
guess the country code. In this case, set the content of DATA_DIR/country_codes/scotland-latest
to GB.

• To remove a region, delete the corresponding OSM file from DATA_DIR/openstreetmap/ and
GraphHopper directory from DATA_DIR/graphhopper/.

8

Chapter 4. Run locally without the script
Follow this section if you cannot use runLocally.sh to run OptaWeb Vehicle Routing because Bash is
not available on your system.

4.1. Download routing data
The routing engine requires geographical data to calculate the time it takes vehicles to travel
between locations. You must download and store OSM (OpenStreetMap) data files on the local file
system before you run OptaWeb Vehicle Routing.

The OSM data files are typically between 100 MB to 1 GB and take time to
download so it is a good idea to download the files before building or starting the
OptaWeb Vehicle Routing application.

Procedure

1. Open http://download.geofabrik.de/ in a web browser.

2. Click a region in the Sub Region list, for example Europe. The sub region’s page opens.

3. In the Sub Regions table, download the OSM file (.osm.pbf) for a country, for example Belgium.

4.2. Create data directory structure
OptaWeb Vehicle Routing reads and writes several types of data on the file system. It reads OSM
(OpenStreetMap) files from the openstreetmap directory, writes a road network graph to the
graphhopper directory, and persists user data in a directory called db. Create a new directory
dedicated to storing all of these data to make it easier to upgrade to a newer version of OptaWeb
Vehicle Routing in the future and continue working with the data you created previously.

Procedure

1. Create the openstreetmap directory in your user account home directory, for example:

$HOME/.optaweb-vehicle-routing
└── openstreetmap

2. Move all of your downloaded OSM files (files with the extension .osm.pbf) to the openstreetmap
directory.

The rest of the directory structure will be created by the OptaWeb Vehicle Routing application
when it runs for the first time. After that, your directory structure will look similar to the following
example:

9

http://download.geofabrik.de/

$HOME/.optaweb-vehicle-routing
├── db
│ └── vrp.mv.db
├── graphhopper
│ └── belgium-latest
└── openstreetmap
 └── belgium-latest.osm.pbf

4.3. Run using the java command
Prerequisites

• Internet access is available. When OptaWeb Vehicle Routing runs it uses third-party public
services such as OpenStreetMap to display map tiles and provide search results.

• Java 11 or higher is installed.

• The data directory is created at $HOME/.optaweb-vehicle-routing.

• A subdirectory called openstreetmap with at least one OSM file exists.

• A country code to use in search queries is identified.

Procedure

Enter the following command:

java -jar optaweb-vehicle-routing-standalone-8.0.0.Final.jar \
--app.persistence.h2-dir=$HOME/.optaweb-vehicle-routing/db \
--app.routing.gh-dir=$HOME/.optaweb-vehicle-routing/graphhopper
--app.routing.osm-dir=$HOME/.optaweb-vehicle-routing/openstreetmap \
--app.routing.osm-file=belgium-latest.osm.pbf \
--app.region.country-codes=BE

10

https://www.openstreetmap.org/about

Chapter 5. Run on OpenShift
Linux and macOS users can use the runOnOpenShift.sh Bash script to install OptaWeb Vehicle
Routing on OpenShift.

5.1. Running on a local OpenShift cluster
Use Red Hat CodeReady Containers to easily set up a single-node OpenShift 4 cluster on your local
computer.

Prerequisites

You have successfully built the project with Maven.

Procedure

1. To install CRC, follow the Red Hat CodeReady Containers Getting Started Guide.

2. When the cluster starts, perform the following steps:

a. Add the OpenShift command-line interface (oc) to your $PATH:

eval $(crc oc-env)

b. Log in as "developer":

oc login -u developer -p developer https://api.crc.testing:6443

c. Create a new project:

oc new-project project_name

d. Run the script:

./runOnOpenShift.sh osm_file_name country_code_list
osm_file_download_url

e. Enter the following command for information about how to use the script:

./runOnOpenShift.sh --help

5.1.1. Updating the deployed application with local changes

11

https://developers.redhat.com/products/codeready-containers
https://code-ready.github.io/crc/

Back end

1. Change the source code and build the back end module with Maven.

2. Start OpenShift build:

cd optaweb-vehicle-routing-backend
oc start-build backend --from-dir=. --follow

Front end

1. Change the source code and build the front end module with npm.

2. Start OpenShift build:

cd optaweb-vehicle-routing-frontend
oc start-build frontend --from-dir=docker --follow

12

Chapter 6. Using OptaWeb Vehicle Routing
In the OptaWeb Vehicle Routing application, you can mark a number of locations on the map. The
first location is assumed to be the depot. Vehicles must deliver goods from this depot to every other
location that you marked.

You can set the number of vehicles and the carrying capacity of every vehicle. However, the route is
not guaranteed to use all vehicles. The application uses as many vehicles as required for an optimal
route.

The current version has certain limitations:

• Every delivery to a location is supposed to take 1 point of vehicle capacity. For example, a
vehicle with a capacity of 10 can visit up to 10 locations before returning to the depot.

• Setting custom names of vehicles and locations is not supported.

• Error information is not supported in the user interface. You must view the terminal output of
the back end to see detailed error messages.

6.1. Creating a route
To create an optimal route, use the Demo tab of the user interface.

1. Click Demo to open the Demo tab.

2. Use the blue and buttons above the map to set the number of vehicles. Each vehicle has a
default capacity of 10.

3. Use the button on the map to zoom in as necessary.

 Do not double-click to zoom in. A double click also creates a location.

4. Click a location for the depot.

5. Click other locations on the map for delivery points.

6. If you want to delete a location:

a. Hover the mouse cursor over the location to see the location name.

b. Find the location name in the list in the left part of the screen.

c. Click the icon next to the name.

Every time you add or remove a location or change the number of vehicles, the application creates
and displays a new optimal route. If the solution uses several vehicles, the application shows the
route for every vehicle in a different color.

6.2. Viewing and setting other details
You can use other tabs of the user interface to view and set additional details.

13

• In the Vehicles tab, you can view, add, and remove vehicles, and also set the capacity for every
vehicle.

• In the Visits tab, you can view and remove locations.

• In the Route tab, you can select every vehicle and view the route for this vehicle.

6.3. Creating custom data sets
There is a built-in demo data set consisting of a several large Belgian cities. If you want to have
more demos offered by the Load demo dropdown, you can prepare your own data sets. To do that,
follow these steps:

1. Add a depot and a number of visits by clicking on the map or using geosearch.

2. Click Export and save the file in the data set directory.

Data set directory is where the app.demo.data-set-dir property points to.

If the application is running through the run script, it will be set to
$HOME/.optaweb-vehicle-routing/dataset.

Otherwise, the property will be taken from application.properties and
defaults to optaweb-vehicle-routing-backend/local/dataset.

3. Edit the YAML file and choose a unique name for the data set.

4. Restart the back end.

After you restart the back end, files in the data set directory will be made available in the Load
demo dropdown.

6.4. Troubleshooting
If the application behaves unexpectedly, review the back end terminal output log.

To resolve issues, remove the back end database:

1. Stop the back end by pressing Ctrl  +  C in the back end terminal window.

2. Remove the directory optaweb-vehicle-routing/optaweb-vehicle-routing-backend/local/db.

14

Chapter 7. Development guide

7.1. Project structure
The project is a multi-module Maven project.

distribution

docs standalone

backend frontend

Figure 3. Module dependency tree diagram

At the bottom of the module tree there are the back end and front end modules, which contain the
application source code.

The standalone module is an assembly module that combines the back end and front end into a
single executable JAR file.

The distribution module represents the final assembly step. It takes the standalone application and
the documentation and wraps them in an archive that is easy to distribute.

7.2. Developing OptaWeb Vehicle Routing
The back end and front end are separate projects that can be built and deployed separately. In fact,
they are written in completely different languages and built with different tools. Both projects have
tools that provide a modern developer experience with fast turn-around between code changes and
the running application.

In the next sections you will learn how to run both back end and front end projects in development
mode.

7.3. Back end
The back end module contains a server-side application that uses OptaPlanner to optimize vehicle
routes. Optimization is a CPU-intensive computation that must avoid any I/O operations in order to
perform to its full potential. Because one of the chief objectives is to minimize the travel cost, either
time or distance, we need to keep the travel cost information in RAM memory. While solving,
OptaPlanner needs to know the travel cost between every pair of locations entered by the user. This
information is stored in a structure called the distance matrix.

When a new location is entered, we calculate the travel cost between the new location and every
other location that has been entered so far, and store the travel cost in the distance matrix. The

15

travel cost calculation is performed by a routing engine called GraphHopper.

Finally, the back end module implements additional supporting functionality, such as:

• persistence,

• WebSocket connection for the front end,

• data set loading, export, and import.

In the next sections you will learn how to configure and run the back end in development mode. To
learn more about the back end code architecture, see Back end architecture.

7.3.1. Running the back end using Spring Boot Maven plugin

Prerequisites

• Java 11 or higher is installed.

• The data directory is set up.

• An OSM file is downloaded.

You can manually set up the data directory and download the OSM file or you can use the run script
to complete these tasks.

Procedure

To run the back end in development mode, enter the following command:

mvn spring-boot:run

7.3.2. Automatic restart

Automatic restart is provided by Spring Boot DevTools and only works when the back end is
running using Spring Boot Maven Plugin. It scans files on the classpath, so you only need to
recompile your changes to trigger application restart. No IDE configuration is needed.

If your IDE has a compile-on-save feature (for example Eclipse or NetBeans), you just need to save
the files that have changed since the last compilation.

IntelliJ IDEA saves changes automatically and you need to select either Build › Recompile, which

recompiles the file in the active tab, or Build › Build Project which recompiles all changes. See
Compile and build applications with IntelliJ IDEA.

7.3.3. Running the back end from IntelliJ IDEA

1. Run org.optaweb.vehiclerouting.OptaWebVehicleRoutingApplication. This will create a run
configuration that you will edit in the next step.

a. Open the OptaWebVehicleRoutingApplication class in the editor.

b. Click the green symbol in the editor window gutter and select Run
'OptaWebVehicleRoutingApplication'.

16

https://github.com/graphhopper/graphhopper
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-devtools-restart
https://www.jetbrains.com/help/idea/compiling-applications.html

The run fails because the working directory is set to the root of the project,
whereas the back end module directory is expected. You are going to
change the working directory in the next step.

See Run applications to learn more about running applications in IntelliJ
IDEA.

2. Select Run › Edit Configurations… and then select Spring Boot ›
OptaWebVehicleRoutingApplication.

3. Set Program arguments to --spring.profiles.active=local to activate the Spring profile called
local. This will make the application use configuration from application-local.properties.

4. Change Working directory to the back end module (optaweb-vehicle-routing-backend).

5. Optionally, set On Update action to Hot swap classes and update trigger file if failed. This
will allow you to use the Update action to quickly restart the application.

See Spring and Spring Boot in IntelliJ IDEA 2018.1 for more details.

7.3.4. Configuration

There are many ways that you can set configuration properties. If you are running locally, you will
probably want to use one of these:

• Set configuration properties in the application.properties file, under /src/main/resources/.

• Use a command line argument when running the packaged application (for example java -jar
optaweb-vehicle-routing-backend.jar --app.my-property=value1).

• Use an environment variable when running the application with spring-boot:run.

For example: app_my_property=value1 ./mvnw spring-boot:run if the property name is app.my-
property (this requires relaxed binding which only works if the property is defined using
@ConfigurationProperties).

It is not possible to set properties by specifying -D when running the application
using the Spring Boot Maven plugin (./mvnw spring-boot:run -Dmy-property). Any
system properties that should be set by the plugin to the forked Java process in
which the application runs need to be specified using systemPropertiesVariables
plugin configuration.

You can learn more about configuring a Spring Boot application on the Spring Boot Externalized
Configuration page.

Use src/main/resources/application-local.properties to store your personal
configuration without affecting the Git working tree.

See the complete list of Back end configuration properties.

17

https://www.jetbrains.com/help/idea/running-applications.html
https://blog.jetbrains.com/idea/2018/04/spring-and-spring-boot-in-intellij-idea-2018-1/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/html/#run-example-system-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config

See also the complete list of common application properties available in Spring Boot.

7.3.5. Logging

OptaWeb uses the SLF4J API and Logback as the logging framework. The Spring environment
enables you to configure most logging aspects including levels, patterns, and log files in the same
way as any other Configuration (most often using application.properties or arguments
--property=value). See the Spring Boot Logging documentation for more information.

Following are examples of properties you can use to control logging level of some parts of the
application:

• Use logging.level.org.optaweb.vehiclerouting=debug to enable debug level for the back end
code.

• Use logging.level.org.optaplanner.core=warn to reduce OptaPlanner logging.

• Use logging.level.org.springframework.web.socket=trace to access more details when
investigating problems with WebSocket connection.

7.4. Front end
The front end project was bootstrapped with Create React App. Create React App provides a
number of scripts and dependencies that help with development and with building the application
for production.

7.4.1. Setting up the development environment

Procedure

1. On Fedora, run the following command to install npm:

sudo dnf install npm

See Downloading and installing Node.js and npm for more information about installing npm.

7.4.2. Install npm dependencies

Unlike Maven, the npm package manager installs dependencies in node_modules under the project
directory and does that only when requested by running npm install. Whenever the dependencies
listed in package.json change (for example when you pull changes to the master branch) you must
run npm install before you run the development server.

Procedure

1. Change directory to the front end module:

cd optaweb-vehicle-routing-frontend

18

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-custom-log-levels
https://create-react-app.dev/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

2. Install dependencies:

npm install

7.4.3. Running the development server

Prerequisites

• npm is installed.

• npm dependencies are installed.

Procedure

1. Run the development server:

npm start

2. Open http://localhost:3000/ in a web browser. By default, the npm start command attempts to
open this URL in your default browser.

Prevent npm start from launching your default browser

If you don’t want npm start to open a new browser tab each time you run it, export
an environment variable BROWSER=none.

You can use .env.local file to make this preference permanent. To do that, enter
the following command:

echo BROWSER=none >> .env.local

The browser refreshes the page whenever you make changes in the front end source code. The
development server process running in the terminal picks up the changes as well and prints
compilation and lint errors to the console.

7.4.4. Running tests

Procedure

1. Run npm test.

7.4.5. Changing the back end location

Use an environment variable called REACT_APP_BACKEND_URL to change the backend URL when
running npm start or npm run build. For example:

REACT_APP_BACKEND_URL=http://10.0.0.123:8081

19

http://localhost:3000/

Note that environment variables will be "baked" inside the JavaScript bundle during the npm build,
so you need to know the back end location before you build and deploy the front end.

Learn more about the React environment variables in Adding Custom Environment Variables.

7.5. Building the project
Run ./mvnw install or mvn install.

20

https://create-react-app.dev/docs/adding-custom-environment-variables/

Chapter 8. Contributing to OptaWeb Vehicle
Routing

8.1. Formatting OptaWeb Vehicle Routing source code
using Maven
The OptaWeb Vehicle Routing back end has a strictly enforced code style. Code formatting is
performed by the Eclipse code formatter, using configuration files from the OptaPlanner project.

By default, when you execute the ./mvnw install command, the code is formatted automatically.
This is important because when you submit a pull request, the continuous integration (CI) build
fails if running the formatter results in any code changes. Therefore, it is recommended that you
always run a full Maven build before submitting a pull request.

Procedure

1. To run a full Maven build, enter the following command:

./mvnw install

2. Optional: To run the formatter without performing a full build, enter the following command:

./mvnw process-sources

8.2. Formatting OptaWeb Vehicle Routing source code
using an IDE
You can use Eclipse IDE or IntelliJ IDEA to format the source code without having to invoke the
Maven build. This allows you to make small changes and commit often while making sure that the
source code is formatted properly and the Maven build is successful after each commit.

You must configure your IDE to use the Eclipse formatter plugin and select the formatter
configuration used by the Maven plugin that formats the source code automatically during the
Maven build. The formatter configuration files are stored in the build/optaplanner-ide-
config/src/main/resources directory under the root of the OptaPlanner repository.

8.2.1. Eclipse IDE setup

Prerequisites

• The OptaPlanner repository is cloned on your computer.

Complete the following steps to configure Eclipse IDE:

Procedure

21

1. Open Window › Preferences and then navigate to Java › Code Style › Formatter.

2. Click Import… and select optaplanner/build/optaplanner-ide-
config/src/main/resources/eclipse-format.xml.

3. Navigate to Java › Code Style › Organize Imports.

4. Click Import… and select the optaplanner/build/optaplanner-ide-
config/src/main/resources/eclipse.importorder.

5. Click Apply and Close.

8.2.2. IntelliJ IDEA setup

Prerequisites

• The OptaPlanner repository is cloned on your computer.

Complete the following steps to configure IntelliJ IDEA:

Procedure

1. Open the Settings or Preferences window:

◦ For Windows and Linux, select File › Settings.

◦ For macOS, select IntelliJ IDEA › Preferences.

2. Navigate to Plugins and install the Eclipse Code Formatter Plugin from the Marketplace.

3. Restart your IDE.

4. Open the Settings (or Preferences) window again and navigate to Other Settings › Eclipse
Code Formatter.

5. Configure the Eclipse Code Formatter:

a. Select Use the Eclipse Code Formatter to enable the plugin.

b. In the Eclipse formatter config section, select the Eclipse workspace/project folder or
config file option, click Browse… and then select optaplanner/build/optaplanner-ide-
config/src/main/resources/eclipse-format.xml.

c. Make sure the Optimize Imports box is ticked, then select the From file option and browse
for optaplanner/build/optaplanner-ide-config/src/main/resources/eclipse.importorder.

22

https://plugins.jetbrains.com/plugin/6546-eclipse-code-formatter

Appendix A: Back end architecture
Domain model and use cases are essential for the application. We put domain model at the center
of the architecture and surround it by the application layer that embeds use cases. Functions such
as route optimization, distance calculation, persistence, and network communication are
considered implementation details and are placed at the outermost layer of the architecture.

Domain

Use cases

Infrastructure

persistence

optimization routing

network

vehicle route

coordinates

distance

Figure 4. Diagram of application layers

A.1. Code organization
The back end code is organized in three layers outlined above.

23

org.optaweb.vehiclerouting
├── domain
├── plugin # Infrastructure layer
│ ├── persistence
│ ├── planner
│ ├── routing
│ └── websocket
└── service # Application layer
 ├── demo
 ├── distance
 ├── location
 ├── region
 ├── reload
 ├── route
 └── vehicle

The service package contains the application layer that implements use cases. The plugin package
contains the infrastructure layer.

Code in each layer is further organized by function. This means that each service or plugin has its
own package.

A.2. Dependency rules
Compile-time dependencies are only allowed to point from outer layers towards the center.
Following this rule helps to keep the domain model independent of underlying frameworks and
other implementation details and model the behavior of business entities more precisely. With
presentation and persistence being pushed out to the periphery, it is easier to test the behavior of
business entities and use cases.

The domain has no dependencies.

Services only depend on the domain. If a service needs to send a result (for example to the database
or to the client), it uses an output boundary interface. Its implementation is injected by the
Inversion of Control (IoC) container.

Plugins depend on services in two ways. Firstly, they invoke services based on events such as a user
input or a route update coming from the optimization engine. Services are injected into plugins
which moves the burden of their construction and dependency resolution to the IoC container.
Secondly, plugins implement service output boundary interfaces to handle use case results, for
example persisting changes to the database or sending a response to the web UI.

A.3. The domain package
The domain package contains business objects that model the domain of this project, for example
Location, Vehicle, Route. These objects are strictly business-oriented and must not be influenced by
any tools and frameworks, for example object-relational mapping tools and web service
frameworks.

24

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans

A.4. The service package
The service package contains classes that implement use cases. A use case describes something that
you want to do, for example adding new location, changing vehicle capacity, or finding coordinates
for an address. The business rules that govern use cases are expressed using the domain objects.

Services often need to interact with plugins in the outer layer, such as persistence, web, and
optimization. To satisfy the dependency rules between layers, the interaction between services and
plugins is expressed in terms of interfaces that define the dependencies of a service. A plugin can
satisfy a dependency of a service by providing a bean that implements the service’s boundary
interface. The Spring IoC container creates an instance of the plugin bean and injects it to the
service at runtime. This is an example of the inversion of control principle.

A.5. The plugin package
The plugin package contains infrastructure functions such as optimization, persistence, routing,
and network.

25

Appendix B: Back end configuration
properties
Property Type Example Description

app.demo.data-set-dir Relative or absolute
path

/home/user/.optaweb-
vehicle-routing/dataset

Custom data sets are
loaded from this
directory. Defaults to
local/dataset.

app.persistence.h2-dir Relative or absolute
path

/home/user/.optaweb-
vehicle-routing/db

The directory used by
H2 to store the
database file. Defaults
to local/db.

app.region.country-
codes

List of ISO 3166-1
alpha-2 country codes

US, GB,IE, DE,AT,CH, may
be empty

Restricts geosearch
results.

app.routing.engine Enumeration air, graphhopper Routing engine
implementation.
Defaults to graphhopper.

app.routing.gh-dir Relative or absolute
path

/home/user/.optaweb-
vehicle-
routing/graphhopper

The directory used by
GraphHopper to store
road network graphs.
Defaults to
local/graphhopper.

app.routing.osm-dir Relative or absolute
path

/home/user/.optaweb-
vehicle-
routing/openstreetmap

The directory that
contains OSM files.
Defaults to
local/openstreetmap.

app.routing.osm-file File name belgium-latest.osm.pbf Name of the OSM file
that should be loaded
by GraphHopper. The
file must be placed
under app.routing.osm-
dir.

optaplanner.solver.ter
mination.spent-limit

java.time.Duration • 1m

• 150s

• P2dT21h
(PnDTnHnMn.nS)

How long the solver
should run after a
location change occurs.

server.address IP address or hostname 10.0.0.123, my-vrp.geo-
1.openshiftapps.com

Network address to
which the server
should bind.

26

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Property Type Example Description

server.port Port number 4000, 8081 Server HTTP port.

27

	Using OptaWeb Vehicle Routing
	Table of Contents
	Chapter 1. Introduction
	1.1. What is OptaWeb Vehicle Routing?

	Chapter 2. Quickstart
	2.1. Install Java 11 or higher
	2.2. Download distribution archive
	2.3. Run OptaWeb Vehicle Routing

	Chapter 3. Run locally using the script
	3.1. Quickstart mode
	3.2. Interactive mode
	3.2.1. Download a new region using the script
	3.2.2. Select a region and run OptaWeb Vehicle Routing

	3.3. Non-interactive mode
	3.4. Air distance mode
	3.5. Tweak the data directory

	Chapter 4. Run locally without the script
	4.1. Download routing data
	4.2. Create data directory structure
	4.3. Run using the java command

	Chapter 5. Run on OpenShift
	5.1. Running on a local OpenShift cluster
	5.1.1. Updating the deployed application with local changes

	Chapter 6. Using OptaWeb Vehicle Routing
	6.1. Creating a route
	6.2. Viewing and setting other details
	6.3. Creating custom data sets
	6.4. Troubleshooting

	Chapter 7. Development guide
	7.1. Project structure
	7.2. Developing OptaWeb Vehicle Routing
	7.3. Back end
	7.3.1. Running the back end using Spring Boot Maven plugin
	7.3.2. Automatic restart
	7.3.3. Running the back end from IntelliJ IDEA
	7.3.4. Configuration
	7.3.5. Logging

	7.4. Front end
	7.4.1. Setting up the development environment
	7.4.2. Install npm dependencies
	7.4.3. Running the development server
	7.4.4. Running tests
	7.4.5. Changing the back end location

	7.5. Building the project

	Chapter 8. Contributing to OptaWeb Vehicle Routing
	8.1. Formatting OptaWeb Vehicle Routing source code using Maven
	8.2. Formatting OptaWeb Vehicle Routing source code using an IDE
	8.2.1. Eclipse IDE setup
	8.2.2. IntelliJ IDEA setup

	Appendix A: Back end architecture
	A.1. Code organization
	A.2. Dependency rules
	A.3. The domain package
	A.4. The service package
	A.5. The plugin package

	Appendix B: Back end configuration properties

